Demand Estimation with Finitely Many Consumers

Jonas Lieber
University of Chicago
Thomas Wiemann
University of Chicago

June 24, 2023

Discrete choice demand model:
\triangleright Consumers choose a product if it maximizes their latent utility
\triangleright T1EV-assumption for latent utility shocks results in logit-model

Estimation w/ endogenous prices (Berry, 1994; Berry et al., 1995):
\triangleright Equate market shares \& conditional choice probabilities (CCPs)
\triangleright 1-1 mapping between shares and latent demand shocks
\triangleright NFP estimator based on nonlinear demand inversion

But market shares are often estimated from consumer choices
\triangleright Issue 1: Inference may be invalid
\triangleright Issue 2: Demand estimators cannot always be computed

Zero-Market-Share Example: Dominick's Finer Foods Data

Table 1: Selected Product Categories

Category	Average Number of UPC's in a	Percent of Total Sale of	Percent of Zero Sales
	Store/Week Pair	Top 20\% UPC's	
Beer	179	87.18%	50.45%
Cereals	212	72.08%	27.14%
Dish Detergent	115	69.04%	42.39%
Frozen Juices	94	75.16%	23.54%
Laundry Detergents	200	65.52%	50.46%
Paper Towels	56	83.56%	48.27%
Soft Drinks	537	91.21%	38.54%
Soaps	140	77.26%	44.39%
Toothbrushes	137	73.69%	58.63%
Bathroom Tissues	50	84.06%	28.14%

Notes. Excerpt of Table 2 of Gandhi et al. (2013).

Contribution to Literature

This paper:
\triangleright Views discrepancy between shares and CCPs as a finite-sample issue
\triangleright Uses concentration inequalities to bound deviations of shares/CCPs
\triangleright Develops feasible consistent estimator w/ estimated market shares
\triangleright Provides inference in settings w/ non-negligible sampling error
Literature:

1. Random coefficient logit model estimation $\mathrm{w} /$ endogenous prices: Berry et al. (1995), Dubé et al. (2012), ...
2. Estimation and inference w/ estimated market shares: Berry et al. (2004), Gandhi et al. (2013), Freyberger (2015), ...
3. Zero-market-share problem: Quan and Williams (2018), Dubé et al. (2021), Hortaçsu et al. (2021), Gandhi et al. (2023)

Outline

1. Discrete choice model w/ endogenous prices
2. Issues from estimated market shares
3. Demand estimation $w /$ finitely many consumers
\triangleright EZ-MPEC
\triangleright Inference
4. Simulations (work in progress)

Outline

1. Discrete choice model w/ endogenous prices
2. Issues from estimated market shares
3. Demand estimation $w /$ finitely many consumers
\triangleright EZ-MPEC
\triangleright Inference
4. Simulations (work in progress)

Random coefficient logit model

Assumption 1

Consumers choose an alternative from $\mathcal{J} \equiv\{0, \ldots, J\}$ via

$$
Y_{i}=\underset{j \in \mathcal{J}}{\arg \max } X_{j}^{\top} \beta_{i}+\xi_{j}+\varepsilon_{i, j} .
$$

Latent utility shocks $\varepsilon_{i, j}$ are i.i.d. T1EV. Customer preference parameters β_{i} are i.i.d. multivariate normal with parameter $\theta \equiv(\mu, \Sigma) \in \Theta$.

Here:
$\triangleright X=\left(X_{1}^{\top}, \ldots, X_{J}^{\top}\right) \equiv$ product characteristics (e.g., prices)
$\triangleright \xi=\left(\xi_{1}, \ldots, \xi_{J}\right) \equiv$ latent demand shocks
$\triangleright \varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i J}\right) \equiv$ additively separable latent utility shocks
Endogeneity concern: $E\left[\xi_{j} \mid X_{j}\right] \neq 0$

Random coefficient logit model (Contd.)

Integrating over ε_{i} and β_{i} results in

$$
\begin{equation*}
\operatorname{Pr}\left(Y_{i}=j \mid X, \xi ; \theta\right)=\int \frac{\exp \left(X_{j} \beta+\xi_{j}\right)}{1+\sum_{k=1}^{J} \exp \left(X_{k} \beta+\xi_{k}\right)} d F(\beta ; \theta), \quad \forall j \tag{1}
\end{equation*}
$$

Let $\pi(X, \xi ; \theta)$ denote $J \times 1$ vector of CCPs

Berry (1994) proves demand inversion:
$\triangleright \forall(X, \theta)$ and $s \in(0,1)^{J}$, there exists a unique solution to

$$
\pi(X, \xi ; \theta)-s=0
$$

Denoted: $\xi(s, X ; \theta)$

BLP Estimator

Assumption 2

There exists a vector of instruments Z such that

$$
E\left[Z^{\top} \xi\right]=0
$$

When $\left\{\left(S_{t}, X_{t}, Z_{t}\right)\right\}_{t=1}^{T} \stackrel{i i d}{\sim}(\pi(X, \xi ; \theta), X, Z)$, this motivates

$$
\hat{\theta}_{T}^{b l p} \equiv \underset{\theta \in \Theta}{\arg \min }\left\|\sum_{t=1}^{T} Z_{t}^{\top} \xi\left(S_{t}, X_{t} ; \theta\right)\right\|_{2}^{2}
$$

Note: Typically weighted by $W_{T}^{1 / 2}=\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t} Z_{t}^{\top}\right)^{-1 / 2}$

Estimated Market Shares

But: Population-level market shares S_{t} are seldom observed directly

Assumption 3

Observed market shares are sample averages of n consumer choices:

$$
S_{j}^{(n)} \equiv \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{j}\left(Y_{i}\right), \quad \forall j
$$

and $S^{(n)}=\left(S_{1}^{(n)}, \ldots, S_{J}^{(n)}\right)$.

Observables we consider:
Assumption 4
The data is $\left(S_{t}^{(n)}, X_{t}, Z_{t}\right) \stackrel{i i d}{\sim}\left(S^{(n)}, X, Z\right), \forall t=1, \ldots, T$.
Note: $E\left[S_{t}^{(n)}\right]=S_{t}$

Outline

1. Discrete choice model w/ endogenous prices
2. Issues from estimated market shares
3. Demand estimation $w /$ finitely many consumers
\triangleright EZ-MPEC
\triangleright Inference
4. Simulations (work in progress)

Issues from Estimated Market Shares

Using $S_{t}^{(n)}$ rather than S_{t} in estimation causes two key issues

Subtle issue: Incidental parameter problem
\triangleright Estimation error $S_{t}^{(n)}-S_{t}$ does not "cancel out"
\triangleright Freyberger (2015): $\sqrt{T}\left(\hat{\theta}_{T}^{b / p}-\theta_{0}\right)$ with $S_{t}^{(n)}$ unbounded unless

$$
\sqrt{T}=o(n)
$$

■ \# consumers must grow sufficiently quickly relative to \# markets

Salient issue: Zero-market-share problem
\triangleright Demand inversion only defined for $s \in(0,1)^{\jmath}$ but supp $S_{t}^{(n)}=[0,1]^{J}$
$\triangleright \hat{\theta}_{T}^{b / p}$ cannot be computed when $\exists j, t: S_{j, t}^{(n)}=0$

Illustration: Infeasible MPEC Estimation

MPEC estimator of Dubé et al. (2012) equivalent to $\hat{\theta}_{T}^{b / p}$:

$$
\begin{array}{ll}
\min _{(\theta, \xi)} & \left\|\sum_{t=1}^{T} Z_{t}^{\top} \xi_{t}\right\|_{2}^{2} \tag{2}\\
\text { s.t. } & S_{j, t}=\int \frac{\exp \left(X_{j, t} \beta+\xi_{j, t}\right)}{1+\sum_{k=1}^{J} \exp \left(X_{k, t} \beta+\xi_{k, t}\right)} d F(\beta ; \theta), \forall t, j
\end{array}
$$

Replacing $S_{j, t}$ with $S_{j, t}^{(n)}$ when $\exists t, j: S_{j, t}^{(n)}=0$ implies no feasible solution \triangleright "Zero-market-share" problem

In practice: Ad-hoc data manipulation to force-fit BLP estimator:
\triangleright Remove j, t with $S_{j, t}^{(n)}=0$ or add $\varepsilon>0$ to zero-valued $S_{j, t}^{(n)}$
\triangleright When $\sqrt{T}=O(n)$, asymp. inference with ad-hoc solutions is ok
Or: Deviate from BLP (e.g., Dubé et al., 2021; Gandhi et al., 2023)

Outline

1. Discrete choice model w/ endogenous prices
2. Issues from estimated market shares
3. Demand estimation w/ finitely many consumers
\triangleright EZ-MPEC
\triangleright Inference
4. Simulations (work in progress)

MPEC with Estimated/Zero-Valued Shares (EZ-MPEC)

We propose $\hat{\theta}_{T}^{\text {ezmpec }}$ minimizer to:

$$
\begin{array}{ll}
\min _{(\theta, \xi)} & \left\|\sum_{t=1}^{T} Z_{t}^{\top} \xi_{t} \cdot D_{t, n, T}^{\left(\alpha_{n, T}\right)}\right\|_{2}^{2} \\
\text { s.t. } & S_{j, t}^{(n)} \in C_{n, T}^{j}\left(X_{t}, \xi_{t} ; \theta, \alpha_{n, T}\right), \forall t, j
\end{array}
$$

Here:
$\triangleright C_{n, T} \equiv$ closed probabilistic bounds on $S_{j, t}^{(n)}-S_{j, t}$
$\triangleright \alpha_{n, T} \equiv$ hyperparameter s.t. $1-\alpha_{n, T}$ is the uniform coverage rate
$\triangleright D_{t, n, T}^{\left(\alpha_{n, T}\right)} \equiv$ indicators for whether $\{0,1\}$ is in the confidence band

Uniform Bounds

Proposition 1

Fix $\alpha \in(0,1)$. Then with Hoeffding's inequality, it holds that

$$
\operatorname{Pr}\left(\exists j, t:\left|S_{j, t}^{(n)}-\pi_{j}\left(X_{t}, \xi_{t} ; \theta_{0}\right)\right| \geq \sqrt{\frac{\log \left(\frac{2 J}{1-\sqrt[T]{1-\alpha}}\right)}{2 n}}\right) \leq \alpha
$$

$\forall n \in \mathbb{N}_{++}$. With Binomial quantiles, it holds that

$$
\begin{aligned}
\operatorname{Pr}\left(\exists j, t: S_{j, t}^{(n)} \notin\left[\frac{1}{n}\right.\right. & F_{\mathrm{Bin}}^{-1}\left(\frac{1-\sqrt[T]{1-\alpha}}{J}, \pi_{j}\left(X_{t}, \xi_{t} ; \theta_{0}\right), n\right), \\
& \left.\left.\frac{1}{n} F_{\mathrm{Bin}}^{-1}\left(1-\frac{1-\sqrt[T]{1-\alpha}}{J}, \pi_{j}\left(X_{t}, \xi_{t} ; \theta_{0}\right), n\right)\right]\right) \leq \alpha,
\end{aligned}
$$

$\forall n \in \mathbb{N}_{++}$, where $F_{\text {Bin }}^{-1}$ denotes the quantile function of the Binomial distribution. For $J=1$, the second inequality holds with equality.

EZ-MPEC Estimation w/ Hoeffding's Bounds

When using Hoeffding's bounds, $\hat{\theta}_{T}^{\text {ezmpec }}$ is

$$
\begin{array}{ll}
\min _{(\theta, \xi)} & \left\|\sum_{t=1}^{T} Z_{t}^{\top} \xi_{t} \cdot\left(\mathbb{1}\left\{S_{j, t}^{(n)} \in\left(\delta_{n, T}\left(\alpha_{n, T}\right), 1-\delta_{n, T}\left(\alpha_{n, T}\right)\right)\right\}\right)_{j=1}^{J}\right\|_{2}^{2} \\
\text { s.t. } & S_{j, t}^{(n)}-\pi_{j}\left(X_{t}, \xi_{t} ; \theta\right) \leq \delta_{n, T}\left(\alpha_{n, T}\right), \forall j, t \\
& \pi_{j}\left(X_{t}, \xi_{t} ; \theta\right)-S_{j, t}^{(n)} \leq \delta_{n, T}\left(\alpha_{n, T}\right), \forall j, t
\end{array}
$$

where

$$
\delta_{n, T}(\alpha) \equiv \sqrt{\frac{\log \left(\frac{2 J}{1-\sqrt[T]{1-\alpha}}\right)}{2 n}}
$$

Basically MPEC but w/ inequality constraints

Consistency

In addition assume:
$\triangleright \exists \gamma \in(0,1)$ such that $P\left(\pi\left(X, \xi ; \theta_{0}\right) \in[\gamma, 1-\gamma]^{J}\right)=1$
$\triangleright \Theta$, supp $X, \operatorname{supp} Z$ are compact
\triangleright full rank and boundedness of $\frac{1}{T} \sum_{t=1}^{T} Z_{t}^{\top} Z_{t}$
$\triangleright \theta_{0}$ is identified from the moment condition $E\left[Z^{\top} \xi\right]=0$

Theorem 1
If $\alpha_{n, T} \in(0,1): \alpha_{n, T}=o(1)$ and $\log (T)=o(n)$, then as $n, T \rightarrow \infty$,

$$
\sup _{\tilde{\theta} \in \Theta_{n, T}^{*}}\left\|\tilde{\theta}-\theta_{0}\right\| \xrightarrow{p} 0
$$

where $\Theta_{n, T}^{*}$ denotes the arg min of the EZ-MPEC estimator with hyperparameter $\alpha_{n, T}$, and θ_{0} are the true demand parameters.

Outline

1. Discrete choice model w/ endogenous prices
2. Issues from estimated market shares
3. Demand estimation w/ finitely many consumers
\triangleright EZ-MPEC
\triangleright Inference
4. Simulations (work in progress)

Consider hypothesis tests of the form

$$
H_{0}: \theta_{0}=\theta \quad \text { versus } \quad H_{1}: \theta_{0} \neq \theta
$$

For this purpose, we propose the test statistic \widehat{B}_{T} given by

$$
\begin{aligned}
\widehat{B}_{T}(\alpha) \equiv \min _{\left\{\tilde{\xi}_{\xi}\right\}_{t=1}^{\top}} & \left\|\left(\sum_{t=1}^{T} \hat{\xi}_{t}^{\top} Z_{t} Z_{t}^{\top} \hat{\xi}_{t} \cdot D_{t, n, T}^{(\alpha)}\right)^{-\frac{1}{2}}\left(\sum_{t=1}^{T} Z_{t}^{\top} \tilde{\xi}_{t} \cdot D_{t, n, T}^{(\alpha)}\right)\right\|_{2}^{2} \\
\text { s.t. } & S_{j, t}^{(n)} \in C_{n, T}^{j}\left(X_{t}, \tilde{\xi}_{t} ; \theta, \alpha\right), \forall t, j
\end{aligned}
$$

Here, $\left(\hat{\xi}_{t}\right)_{t=1}^{T}$ are consistent first-step estimates
\triangleright E.g., from EZ-MPEC or the ad-hoc BLP estimator

Inference (Contd.)

Theorem 2

Let the assumptions of Theorem 1 hold. Then, under $H_{0}, \forall \tau, \alpha \in\left(0, \frac{1}{2}\right)$,

$$
\limsup _{n, T \rightarrow \infty} E\left[\mathbb{1}\left\{\widehat{B}_{T}(\alpha)>c_{K}^{1-\tau}\right\}\right] \leq \tau(1-\alpha)+\alpha,
$$

where $c_{K}^{1-\tau}$ is the $1-\tau$ quantile of a χ^{2} distribution with K d.o.f.
Two alternatives for test at significance level $\tilde{\tau}$:
\triangleright Take $\tau, \alpha: \tau(1-\alpha)+\alpha=\tilde{\tau}$
\triangleright Suppose $\alpha=\alpha_{n, T}=o(1)$ and take $\tau=\tilde{\tau}$
Importantly: Valid inference when $\log (T)=O(n)$
\triangleright Improvement over $\sqrt{T}=o(n)$ of $\hat{\theta}_{T}^{b l p}$ with $S_{t}^{(n)}$ (Freyberger, 2015)
\triangleright Allows for non-negligible sampling error
Confidence intervals constructed via test inversion

Subvector Inference

Confidence interval for θ_{0} requires grid-search
\triangleright Computationally demanding for many product characteristics
For a function $R: \Theta \rightarrow \mathbb{R}^{d}$ and vector $r \in \mathbb{R}^{d}$, consider

$$
\begin{gathered}
H_{0}: R\left(\theta_{0}\right)=r \quad \text { versus } \quad H_{1}: R^{\top} \theta_{0} \neq r \\
\tilde{B}_{T}(\alpha) \equiv \min _{\tilde{\theta},\left\{\tilde{\xi}_{t}\right\}_{t=1}^{T}}\left\|\left(\sum_{t=1}^{T} \hat{\xi}_{t}^{\top} Z_{t} Z_{t}^{\top} \hat{\xi}_{t} \cdot D_{t, n, T}^{(\alpha)}\right)^{-\frac{1}{2}}\left(\sum_{t=1}^{T} Z_{t}^{\top} \tilde{\xi}_{t} \cdot D_{t, n, T}^{(\alpha)}\right)\right\|_{2}^{2} \\
\text { s.t. } \quad S_{j, t}^{(n)} \in C_{n, T}^{j}\left(X_{t}, \tilde{\xi}_{t} ; \tilde{\theta}, \alpha\right), \forall t, j \\
\\
R(\tilde{\theta})=r
\end{gathered}
$$

Then as before: $\lim \sup _{n, T \rightarrow \infty} E\left[\mathbb{1}\left\{\tilde{B}_{T}(\alpha)>c_{K}^{1-\tau}\right\}\right] \leq \tau+\alpha$
Subvector inference: $H_{0}: R^{\top} \theta_{0}=r$

Outline

1. Discrete choice model w/ endogenous prices
2. Issues from estimated market shares
3. Demand estimation $w /$ finitely many consumers
\triangleright EZ-MPEC
\triangleright Inference
4. Simulations (work in progress)

Monte Carlo Simulations

Monte Carlo:
$\triangleright T=50, J=5, n$ varying
$\triangleright 3$ product characteristics $X_{j, t} \&$ prices $p_{j, t}$
\triangleright prices $p_{j, t}$ correlated $\mathrm{w} / \xi_{j, t}$
\triangleright excluded instruments $Z_{j, t}$ included $\mathrm{w} /$ series expansion

Results based on 1,000 repetitions

Simulation w/o Random Coefficients

First: β_{i} fixed.
$\triangleright \hat{\theta}_{T}^{b / p}$ simplifies to TSLS w/ outcome $\log \left(S_{j, t}\right) / \log \left(S_{0, t}\right)$
TSLS w/ $S_{t}^{(n)}$ is computed w/o observation for which $S_{j, t}^{(n)}=0$

Table 2: MAE for DGP w/o Random Coefficients

n	TSLS w/ S_{t} (infeasible) (1)	TSLS w/ $S_{t}^{(n)}$ (feasible) (2)	EZ-MPEC (feasible) (3)	Share of $S_{t}^{(n)}=0$
1000	0.088	0.260	0.185	(4)
2000	0.091	0.191	0.166	0.095
3000	0.084	0.167	0.154	0.068
4000	0.088	0.173	0.150	0.054
5000	0.092	0.150	0.158	0.046

Notes. Results based on 1,000 Monte Carlo simulations. Throughout, $T=$ 50 and $J=5$.

Simulation w/ Random Coefficients

Second: β_{i} is multivariate normal
MPEC $\mathrm{w} / S_{t}^{(n)}$ is computed w / o observation for which $S_{j, t}^{(n)}=0$

Table 3: MAE for DGP w/ Random Coefficients

n	MPEC w/ S_{t} (infeasible) (1)	MPEC w/ $S_{t}^{(n)}$ (feasible)	EZ-MPEC (feasible)	Share of $S_{t}^{(n)}=0$
1000	0.148	0.263	(2)	(4)
2000	0.151	0.222	0.250	0.061
3000	0.142	0.213	0.189	0.040
4000	0.146	0.199	0.178	0.031
5000	0.134	0.199	0.171	0.026

Notes. Results based on 1,000 Monte Carlo simulations. Throughout, $T=$ 50 and $J=5$.

This paper:
\triangleright Develops feasible consistent estimator for BLP model
\triangleright Provides valid inference in settings w/ non-negligble sampling error

Most relevant in settings with:
\triangleright Relatively few consumers per market
\triangleright Zero-valued market shares

Work in progress:
\triangleright More extensive simulation study
\triangleright Empirical application

References I

Berry, S., Levinsohn, J., and Pakes, A. (1995). Automobile Prices in Market Equilibrium. Econometrica: Journal of the Econometric Society, pages 841-890.
Berry, S., Linton, O. B., and Pakes, A. (2004). Limit theorems for estimating the parameters of differentiated product demand systems. The Review of Economic Studies, 71(3):613-654.
Berry, S. T. (1994). Estimating discrete-choice models of product differentiation. The RAND Journal of Economics, pages 242-262.
Dubé, J.-P., Fox, J. T., and Su, C.-L. (2012). Improving the numerical performance of static and dynamic aggregate discrete choice random coefficients demand estimation. Econometrica, 80(5):2231-2267.
Dubé, J.-P., Hortaçsu, A., and Joo, J. (2021). Random-coefficients logit demand estimation with zero-valued market shares. Marketing Science.
Freyberger, J. (2015). Asymptotic theory for differentiated products demand models with many markets. Journal of Econometrics, 185(1):162-181.

References II

Gandhi, A., Lu, Z., and Shi, X. (2013). Estimating Demand for Differentiated Products with Error in Market Shares.
Gandhi, A., Lu, Z., and Shi, X. (2023). Estimating demand for differentiated products with zeroes in market share data.
Quantitative Economics, 14(2):381-418.
Hortaçsu, A., Natan, O. R., Parsley, H., Schwieg, T., and Williams, K. R. (2021). Incorporating search and sales information in demand estimation. Technical report, National Bureau of Economic Research.
Quan, T. W. and Williams, K. R. (2018). Product variety, across-market demand heterogeneity, and the value of online retail. The RAND Journal of Economics, 49(4):877-913.

Let G_{T} denote the (infeasible) objective function of $\hat{\theta}_{T}^{b / p}$:

$$
G_{T}(\theta)=\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}^{\top} \xi\left(S_{t}, X_{t}, \theta\right)\right)^{\top} W_{T}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}^{\top} \xi\left(S_{t}, X_{t}, \theta\right)\right)
$$

Assumption 5

$$
\begin{aligned}
\forall \delta>0, & \exists M(\delta)>0, \text { such that } \\
& \lim _{T \rightarrow \infty} \operatorname{Pr}\left(\inf _{\theta \in \Theta:\left\|\theta-\theta_{0}\right\|>\delta}\left\|G_{T}(\theta)-G_{T}\left(\theta_{0}\right)\right\| \geq M(\delta)\right)=1 .
\end{aligned}
$$

