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Introduction

Discrete choice demand model:
▷ Consumers choose a product if it maximizes their latent utility
▷ T1EV-assumption for latent utility shocks results in logit-model

Estimation w/ endogenous prices (Berry, 1994; Berry et al., 1995):
▷ Equate market shares & conditional choice probabilities (CCPs)
▷ 1-1 mapping between shares and latent demand shocks
▷ NFP estimator based on nonlinear demand inversion

But market shares are often estimated from consumer choices
▷ Issue 1: Inference may be invalid
▷ Issue 2: Demand estimators cannot always be computed
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Zero-Market-Share Example: Dominick’s Finer Foods Data

Table 1: Selected Product Categories

Category Average
Number of
UPC’s in a
Store/Week
Pair

Percent
of Total
Sale of
Top 20%
UPC’s

Percent of
Zero Sales

Beer 179 87.18% 50.45%
Cereals 212 72.08% 27.14%
Dish Detergent 115 69.04% 42.39%
Frozen Juices 94 75.16% 23.54%
Laundry Detergents 200 65.52% 50.46%
Paper Towels 56 83.56% 48.27%
Soft Drinks 537 91.21% 38.54%
Soaps 140 77.26% 44.39%
Toothbrushes 137 73.69% 58.63%
Bathroom Tissues 50 84.06% 28.14%

Notes. Excerpt of Table 2 of Gandhi et al. (2013).
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Contribution to Literature

This paper:
▷ Views discrepancy between shares and CCPs as a finite-sample issue

▷ Uses concentration inequalities to bound deviations of shares/CCPs

▷ Develops feasible consistent estimator w/ estimated market shares

▷ Provides inference in settings w/ non-negligible sampling error

Literature:
1. Random coefficient logit model estimation w/ endogenous prices:

Berry et al. (1995), Dubé et al. (2012), . . .

2. Estimation and inference w/ estimated market shares: Berry et al.
(2004), Gandhi et al. (2013), Freyberger (2015), . . .

3. Zero-market-share problem: Quan and Williams (2018), Dubé et al.
(2021), Hortaçsu et al. (2021), Gandhi et al. (2023)
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Outline

1. Discrete choice model w/ endogenous prices

2. Issues from estimated market shares

3. Demand estimation w/ finitely many consumers
▷ EZ-MPEC
▷ Inference

4. Simulations (work in progress)
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Random coefficient logit model

Assumption 1
Consumers choose an alternative from J ≡ {0, . . . , J} via

Yi = arg max
j∈J

X ⊤
j βi + ξj + εi,j .

Latent utility shocks εi,j are i.i.d. T1EV. Customer preference parameters
βi are i.i.d. multivariate normal with parameter θ ≡ (µ, Σ) ∈ Θ.

Here:
▷ X = (X ⊤

1 , . . . , X ⊤
J ) ≡ product characteristics (e.g., prices)

▷ ξ = (ξ1, . . . , ξJ) ≡ latent demand shocks
▷ εi = (εi1, . . . , εiJ) ≡ additively separable latent utility shocks

Endogeneity concern: E [ξj |Xj ] ̸= 0
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Random coefficient logit model (Contd.)

Integrating over εi and βi results in

Pr(Yi = j |X , ξ; θ) =
∫ exp (Xjβ + ξj)

1 +
∑J

k=1 exp (Xkβ + ξk)
dF (β; θ), ∀j (1)

Let π(X , ξ; θ) denote J × 1 vector of CCPs

Berry (1994) proves demand inversion:
▷ ∀(X , θ) and s ∈ (0, 1)J , there exists a unique solution to

π(X , ξ; θ) − s = 0

Denoted: ξ(s, X ; θ)
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BLP Estimator

Assumption 2
There exists a vector of instruments Z such that

E
[
Z⊤ξ

]
= 0.

When {(St , Xt , Zt)}T
t=1

iid∼ (π(X , ξ; θ), X , Z ), this motivates

θ̂blp
T ≡ arg min

θ∈Θ

∥∥∥∥∥
T∑

t=1
Z⊤

t ξ(St , Xt ; θ)

∥∥∥∥∥
2

2

Note: Typically weighted by W 1/2
T = ( 1

T
∑T

t=1 ZtZ⊤
t )−1/2
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Estimated Market Shares

But: Population-level market shares St are seldom observed directly

Assumption 3
Observed market shares are sample averages of n consumer choices:

S(n)
j ≡ 1

n

n∑
i=1

1j(Yi), ∀j ,

and S(n) = (S(n)
1 , . . . , S(n)

J ).

Observables we consider:

Assumption 4
The data is (S(n)

t , Xt , Zt)
iid∼ (S(n), X , Z ), ∀t = 1, . . . , T .

Note: E [S(n)
t ] = St
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4. Simulations (work in progress)
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Issues from Estimated Market Shares

Using S(n)
t rather than St in estimation causes two key issues

Subtle issue: Incidental parameter problem
▷ Estimation error S(n)

t − St does not “cancel out”
▷ Freyberger (2015):

√
T (θ̂blp

T − θ0) with S(n)
t unbounded unless

√
T = o(n)

▷ # consumers must grow sufficiently quickly relative to # markets

Salient issue: Zero-market-share problem
▷ Demand inversion only defined for s ∈ (0, 1)J but supp S(n)

t = [0, 1]J

▷ θ̂blp
T cannot be computed when ∃j , t : S(n)

j,t = 0
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Illustration: Infeasible MPEC Estimation
MPEC estimator of Dubé et al. (2012) equivalent to θ̂blp

T :

min
(θ,ξ)

∥∥∥∥∥
T∑

t=1
Z⊤

t ξt

∥∥∥∥∥
2

2

s.t. Sj,t =
∫ exp (Xj,tβ + ξj,t)

1 +
∑J

k=1 exp (Xk,tβ + ξk,t)
dF (β; θ), ∀t, j

(2)

Replacing Sj,t with S(n)
j,t when ∃t, j : S(n)

j,t = 0 implies no feasible solution
▷ “Zero-market-share” problem

In practice: Ad-hoc data manipulation to force-fit BLP estimator:
▷ Remove j , t with S(n)

j,t = 0 or add ε > 0 to zero-valued S(n)
j,t

▷ When
√

T = o(n), asymp. inference with ad-hoc solutions is ok

Or: Deviate from BLP (e.g., Dubé et al., 2021; Gandhi et al., 2023)
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MPEC with Estimated/Zero-Valued Shares (EZ-MPEC)

We propose θ̂ezmpec
T minimizer to:

min
(θ,ξ)

∥∥∥∥∥
T∑

t=1
Z⊤

t ξt · D(αn,T )
t,n,T

∥∥∥∥∥
2

2

s.t. S(n)
j,t ∈ C j

n,T (Xt , ξt ; θ, αn,T ), ∀t, j .

Here:
▷ Cn,T ≡ closed probabilistic bounds on S(n)

j,t − Sj,t

▷ αn,T ≡ hyperparameter s.t. 1 − αn,T is the uniform coverage rate

▷ D(αn,T )
t,n,T ≡ indicators for whether {0, 1} is in the confidence band
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Uniform Bounds

Proposition 1
Fix α ∈ (0, 1). Then with Hoeffding’s inequality, it holds that

Pr

∃j , t : |S(n)
j,t − πj(Xt , ξt ; θ0)| ≥

√√√√ log
(

2J
1− T√1−α

)
2n

 ≤ α,

∀n ∈ N++. With Binomial quantiles, it holds that

Pr
(

∃j , t : S(n)
j,t ̸∈

[1
nF −1

Bin

(
1 − T

√
1 − α

J , πj(Xt , ξt ; θ0), n
)

,

1
nF −1

Bin

(
1 − 1 − T

√
1 − α

J , πj(Xt , ξt ; θ0), n
)])

≤ α,

∀n ∈ N++, where F −1
Bin denotes the quantile function of the Binomial

distribution. For J = 1, the second inequality holds with equality.
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EZ-MPEC Estimation w/ Hoeffding’s Bounds

When using Hoeffding’s bounds, θ̂ezmpec
T is

min
(θ,ξ)

∥∥∥∥∥
T∑

t=1
Z⊤

t ξt ·
(
1

{
S(n)

j,t ∈ (δn,T (αn,T ), 1 − δn,T (αn,T ))
})J

j=1

∥∥∥∥∥
2

2

s.t. S(n)
j,t − πj(Xt , ξt ; θ) ≤ δn,T (αn,T ), ∀j , t

πj(Xt , ξt ; θ) − S(n)
j,t ≤ δn,T (αn,T ), ∀j , t

where

δn,T (α) ≡

√√√√ log
(

2J
1− T√1−α

)
2n

Basically MPEC but w/ inequality constraints
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Consistency

In addition assume:
▷ ∃γ ∈ (0, 1) such that P(π(X , ξ; θ0) ∈ [γ, 1 − γ]J) = 1
▷ Θ, supp X , supp Z are compact
▷ full rank and boundedness of 1

T
∑T

t=1 Z⊤
t Zt

▷ θ0 is identified from the moment condition E [Z⊤ξ] = 0 details

Theorem 1
If αn,T ∈ (0, 1) : αn,T = o(1) and log(T ) = o(n), then as n, T → ∞,

sup
θ̃∈Θ∗

n,T

∥∥θ̃ − θ0
∥∥ p→ 0,

where Θ∗
n,T denotes the arg min of the EZ-MPEC estimator with

hyperparameter αn,T , and θ0 are the true demand parameters.
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Inference

Consider hypothesis tests of the form

H0 : θ0 = θ versus H1 : θ0 ̸= θ

For this purpose, we propose the test statistic B̂T given by

B̂T (α) ≡ min
{ξ̃t }T

t=1

∥∥∥∥∥∥
( T∑

t=1
ξ̂⊤

t ZtZ⊤
t ξ̂t · D(α)

t,n,T

)− 1
2
( T∑

t=1
Z⊤

t ξ̃t · D(α)
t,n,T

)∥∥∥∥∥∥
2

2

s.t. S(n)
j,t ∈ C j

n,T (Xt , ξ̃t ; θ, α), ∀t, j

Here, (ξ̂t)T
t=1 are consistent first-step estimates

▷ E.g., from EZ-MPEC or the ad-hoc BLP estimator
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Inference (Contd.)

Theorem 2
Let the assumptions of Theorem 1 hold. Then, under H0, ∀τ, α ∈ (0, 1

2 ),

lim sup
n,T→∞

E
[
1{B̂T (α) > c1−τ

K }
]

≤ τ(1 − α) + α,

where c1−τ
K is the 1 − τ quantile of a χ2 distribution with K d.o.f.

Two alternatives for test at significance level τ̃ :
▷ Take τ, α : τ(1 − α) + α = τ̃

▷ Suppose α = αn,T = o(1) and take τ = τ̃

Importantly: Valid inference when log(T ) = o(n)
▷ Improvement over

√
T = o(n) of θ̂blp

T with S(n)
t (Freyberger, 2015)

▷ Allows for non-negligible sampling error

Confidence intervals constructed via test inversion
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Subvector Inference

Confidence interval for θ0 requires grid-search
▷ Computationally demanding for many product characteristics

For a function R : Θ → R
d and vector r ∈ Rd , consider

H0 : R(θ0) = r versus H1 : R⊤θ0 ̸= r

B̃T (α) ≡ min
θ̃,{ξ̃t }T

t=1

∥∥∥∥∥∥
( T∑

t=1
ξ̂⊤

t ZtZ⊤
t ξ̂t · D(α)

t,n,T

)− 1
2
( T∑

t=1
Z⊤

t ξ̃t · D(α)
t,n,T

)∥∥∥∥∥∥
2

2

s.t. S(n)
j,t ∈ C j

n,T (Xt , ξ̃t ; θ̃, α), ∀t, j

R(θ̃) = r

Then as before: lim supn,T→∞ E
[
1{B̃T (α) > c1−τ

K }
]

≤ τ + α

Subvector inference: H0 : R⊤θ0 = r
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Monte Carlo Simulations

Monte Carlo:
▷ T = 50, J = 5, n varying
▷ 3 product characteristics Xj,t & prices pj,t

▷ prices pj,t correlated w/ ξj,t

▷ excluded instruments Zj,t included w/ series expansion

Results based on 1,000 repetitions
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Simulation w/o Random Coefficients

First: βi fixed.
▷ θ̂blp

T simplifies to TSLS w/ outcome log(Sj,t)/log(S0,t)

TSLS w/ S(n)
t is computed w/o observation for which S(n)

j,t = 0

Table 2: MAE for DGP w/o Random Coefficients

n TSLS w/ St TSLS w/ S(n)
t EZ-MPEC Share of S(n)

t = 0
(infeasible) (feasible) (feasible)

(1) (2) (3) (4)

1000 0.088 0.260 0.185 0.095
2000 0.091 0.191 0.166 0.068
3000 0.084 0.167 0.154 0.054
4000 0.088 0.173 0.150 0.046
5000 0.092 0.150 0.158 0.040

Notes. Results based on 1,000 Monte Carlo simulations. Throughout, T =
50 and J = 5.

Lieber & Wiemann Demand Estimation with Finitely Many Consumers 19 / 21



Simulation w/ Random Coefficients

Second: βi is multivariate normal

MPEC w/ S(n)
t is computed w/o observation for which S(n)

j,t = 0

Table 3: MAE for DGP w/ Random Coefficients

n MPEC w/ St MPEC w/ S(n)
t EZ-MPEC Share of S(n)

t = 0
(infeasible) (feasible) (feasible)

(1) (2) (3) (4)

1000 0.148 0.263 0.250 0.061
2000 0.151 0.222 0.205 0.040
3000 0.142 0.213 0.189 0.031
4000 0.146 0.199 0.178 0.026
5000 0.134 0.199 0.171 0.023

Notes. Results based on 1,000 Monte Carlo simulations. Throughout, T =
50 and J = 5.
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Conclusion

This paper:
▷ Develops feasible consistent estimator for BLP model
▷ Provides valid inference in settings w/ non-negligble sampling error

Most relevant in settings with:
▷ Relatively few consumers per market
▷ Zero-valued market shares

Work in progress:
▷ More extensive simulation study
▷ Empirical application
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Identification Assumption back

Let GT denote the (infeasible) objective function of θ̂blp
T :

GT (θ) =
(

1
T

T∑
t=1

Z⊤
t ξ(St , Xt , θ)

)⊤

WT

(
1
T

T∑
t=1

Z⊤
t ξ(St , Xt , θ)

)

Assumption 5
∀δ > 0, ∃M(δ) > 0, such that

lim
T→∞

Pr
(

inf
θ∈Θ:∥θ−θ0∥>δ

∥GT (θ) − GT (θ0)∥ ≥ M(δ)
)

= 1.
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