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Abstract

This paper develops a nonparametric identification approach for causal effects of an en-

dogenous macroeconomic variable on microeconomic outcomes. The key assumption is the

existence of an exogenous variable that shifts responsiveness to the variable of interest with-

out shifting responsiveness to other macroeconomic time series. We apply the approach to

study the effect of health care policy uncertainty (HCPU) on households’ portfolio choice us-

ing health shocks to capture cross-sectional heterogeneity. Under the additional assumption

of risk averse agents, our approach provides an informative bound on the average causal effect
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1. Introduction

More than a decade after the 2010 enactment of the Affordable Care Act, health care

policy remains a central topic of political debate in the United States. In a comparison of 11

policy categories, Baker et al. (2016) find health care policy to be the second largest source

of policy uncertainty in the US, behind only fiscal policy uncertainty. The recent COVID-19

pandemic has driven both economic and health care policy uncertainty to unprecedented

levels, nearly double their pre-2020 levels, as countries first struggled to determine an ap-

propriate response (Altig et al., 2020) and now grapple over how to effect an expeditious

recovery. Yet the literature on the economic effect of uncertainty about health care policy

on households’ economic behavior is in its infancy.

A key challenge for identification of causal effects of policy uncertainty, including health

care policy uncertainty, is its potential confoundedness with other macroeconomic time series.

For example, Bloom (2014) notes that the (general) economic policy uncertainty index of

Baker et al. (2016) is 51% higher in recessions. Further, a defining feature of macroeconomic

variables such as uncertainty associated with federal policies is their invariance across the

economy for any given point in time. As a result, construction of a suitable “control” based

on standard alternative assumptions such as parallel trends is not immediately possible. To

address these challenges, the empirical policy uncertainty literature frequently compares sub-

populations that are expected to differ in their responsiveness to the specific policies but to

react similarly to other forms of uncertainty, such as recession-caused economic uncertainty.

For example, Giavazzi and McMahon (2012) compare private sector employees with civil

servants in their analysis of Germany’s 1998 national election, arguing the latter were not

directly affected by the candidates’ policy differences and hence less exposed to the increased

policy uncertainty. Similarly, Baker et al. (2016) consider a regression specification that

interacts policy uncertainty with a measure of revenue from government contracts to capture

firms’ heterogeneous exposure to uncertainty in government spending.
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The first contribution of this paper is to formalize the idea that subgroup heterogeneity

may be used to aid identification of causal effects of endogenous macroeconomic time se-

ries on microeconomic outcomes. We focus our analysis on two causal parameters. First,

the expected difference in potential outcomes at two different levels of the macroeconomic

variable. This average causal effect captures the level-impact of a hypothesized shift in the

macroeconomic variable on individuals, holding everything else – including the distribution

of unobservables – equal. Second, the conditional average difference of causal effects between

two fixed subgroups. This parameter describes the observed heterogeneity in responses to

a shift in the macroeconomic variable. The two parameters are complementary as they

allow for insights into the overall and distributional effects of the macroeconomic variable

of interest, respectively. Throughout the identification analysis, we allow for unobserved

heterogeneity and make no parametric assumptions on the potential outcomes.

Our first identification result shows that the conditional average difference of causal

effects is identified without (conditional) independence assumptions that are often directly

placed on the macroeconomic variable of interest. Instead, the key identifying assumption is

the existence of a sufficiently exogenous exposure variable that shifts responsiveness to the

macroeconomic variable of interest but does not shift responsiveness to other macroeconomic

time series. The average causal effect, however, is not generally identified under the same

assumptions due to the absence of a “non-treated” group. Our second identification result

then shows that a sharp bound on the average causal effect can be derived if sign restrictions

on the causal effects across subgroups are available.

The intuition for the proposed approach is straightforward. Identification of the con-

ditional average difference of causal effects is achieved by correlating the macroeconomic

variable of interest with values of the coefficients that result from cross-sectional regressions

of the outcome on the exposure variable in each time period. The assumptions we introduce

permit a causal interpretation by ensuring that changes in the coefficient of the exposure
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variable across time can be attributed to changes in the macroeconomic variable of interest.

By combining this result with a sign-restriction on the effects of macroeconomic variable

across all levels of exposure, the bound on the average causal effect can then be constructed

by integrating the conditional effects over the marginal distribution of the exposure variable.

Our approach is closely related to the recent literature on difference-in-difference designs,

which historically had considered a single treated and control group with a binary treatment

but recently have been extended to more general contexts. Particularly related are Callaway

et al. (2021), who consider identification of causal effects with continuous treatment, and

De Chaisemartin and d’Haultfoeuille (2018) who analyze settings where treatment increases

by varying amounts for both groups. Our analysis may be viewed as a difference-in-difference

design with continuous treatment in which treatment intensity differs across groups, but

where intensity differences are not known a priori. We further allow group identities to lie

along a continuum. Similarly to De Chaisemartin and d’Haultfoeuille (2018), absence of a

non-treated group implies that the level-effect of treatment is generally unidentified, but we

show how economic theory can be leveraged to obtain sharp bounds.

In addition, our identification analysis contributes to the existing literature on shift-share

designs, where macroeconomic (common) shocks are interacted with a measure of individual-

level exposure. Our setting is similar to that of Goldsmith-Pinkham et al. (2020), who

consider exogenous exposure to endogenous shocks.1 In contrast to shift-share approaches,

we analyze exposure differences that are not (necessarily) motivated by accounting identities

and allow for non-additively separable confounders. Our analysis may thus also be viewed

as extending existing exposure designs to settings with unknown functional forms.

The second contribution of this paper is the analysis of the effects of health care policy

uncertainty on households’ financial decisions. Applying the developed identification design,

1In contrast, Adao et al. (2019) and Borusyak et al. (2022) consider endogenous exposure to exogenous

shocks.
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we use unexpected changes in households’ health to capture heterogeneous exposure to health

care policy uncertainty. This strategy exploits the idea that worsening health expectations

may affect households’ responsiveness to medical expenditure risk as induced by health care

policy uncertainty. The key assumption is then that unexpected changes in health do not

affect households’ responses to other macroeconomic variables correlated with health care

policy uncertainty (e.g., trade policy uncertainty). Bounds on the average causal effect of

health care policy uncertainty on households’ relative investment in risky versus safe assets

are obtained by leveraging economic theory on background risk, which implies that risk averse

households will (weakly) decrease their relative demand for risky assets when faced with an

undiversifiable risk such as increased health care policy uncertainty (Pratt and Zeckhauser,

1987; Kimball, 1993; Gollier and Pratt, 1996).

Our empirical analysis uses as a starting point the category-specific health care policy

uncertainty index developed by Baker et al. (2016) as the primary variable of interest. The

results indicate economically substantive average causal effects of health care policy uncer-

tainty on households’ portfolio choice. When health care policy uncertainty increases by

70%, couple (single) households are estimated to increase their safe asset share by at least

3.5 (2.7) percentage points.2 The same increase in health care policy uncertainty also results

in an estimated average decrease in couple (single) households’ risky asset share of at least

1.5 (2.3) percentage points. The results thus highlight the importance of health care policy

uncertainty as a determinant of households’ financial behavior.

Complementing the empirical results on the average causal effects of health care pol-

icy uncertainty, estimates of the average difference in causal effects across varying levels of

health shock severity indicate heterogeneity (with respect to unexpected changes in health)

2These interpretations are made precise in Section 4. For illustrative purposes, throughout the paper

we refer to an increase of 70% in health care policy uncertainty, corresponding to the increase in the Baker

et al. (2016) health care policy uncertainty index from a 2016 average of 110 to the 2017 average of 191. The

latter year is associated with extensive political efforts to repeal the Affordable Care Act.
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in the effect of health care policy uncertainty on households’ relative demand for safe and

risky assets. Compared to a couple (single) household that finds itself with fewer severe

health conditions than expected, a couple (single) household that experiences no unexpected

change in severe conditions is estimated to increase its safe asset share by approximately

3.3 (3.1) percentage points, on average, when health care policy uncertainty increases by

70%. Correspondingly, couple (single) households reduce their share of relative risky assets

by approximately 2.9 (2.2) percentage points. Differences in the effect of health care pol-

icy uncertainty of similar magnitude are also documented across households that differ by

unexpected changes in the number of hospital stays or ability to conduct activities of daily

living. In addition to documenting heterogeneity per se, our first stage estimates indicate

non-monotonicity in how health shocks change households’ responsiveness to health care

policy uncertainty. In particular, households that are at their expected health level are esti-

mated to react more strongly to increases in health care policy uncertainty than households

that are in substantially better or worse health than expected.

The empirical results on the effects of health care policy uncertainty add to the existing

literature on the effects of economic policy uncertainty. The policy uncertainty measure

of Baker et al. (2016) that we rely on is a widely used to study the association of policy

uncertainty with other macroeconomic variables (e.g., Stock and Watson, 2012) or its effects

on firms (e.g., Pástor and Veronesi, 2013; Baker et al., 2016; Gulen and Ion, 2016). We

contribute primarily to the burgeoning strand of literature that instead analyzes the effects

of policy uncertainty on households, including Giavazzi and McMahon (2012), Luttmer and

Samwick (2018), and the ongoing work of Agarwal et al. (2018) and Gábor-Tóth and Geor-

garakos (2019). To the best of our knowledge, ours is the first study with a focus on health

care policy uncertainty, despite the prominence of health care in the US policy landscape.

The paper proceeds as follows: Section 2 defines the two parameters of interest and de-

velops our main identification results in a general framework. Section 3 then relates the
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identification approach to the empirical context of health care policy uncertainty and de-

scribes construction of the empirical variables from data. Section 4 presents estimates of the

causal effects of health care policy uncertainty on households’ portfolio choice and relates the

results to existing empirical research. Section 5 concludes. A series of supplemental appen-

dices describing complementary identification results, data construction and implementation

details, and robustness checks is available online.

2. Causal Effects of Macroeconomic Variables on Microeconomic Outcomes

This section defines the parameters of interest, discusses sufficient identifying assump-

tions, and states our theoretical results.3 The final subsection briefly discusses estimation

and inference.

2.1. Framework

We are interested in the effect of a macroeconomic variable (i.e., a variable that is invari-

ant across individuals at any point in time, e.g., the level of health care policy uncertainty)

on a microeconomic outcome (e.g., the share of risky assets an individual invests in). For all

individuals i ∈ N and time periods t ∈ T , consider the random variables (Yi,t,Wt, Zi,t, Ui,t)

defined on a common probability space, with joint distribution characterized by the causal

model

Yi,t = g(Wt, Zi,t, Ui,t) (1)

where Yi,t denotes the outcome, Wt is the macroeconomic variable of interest, Zi,t is the

exposure variable, and Ui,t are all determinants of Yi,t other than (Wt, Zi,t). Further, g :

suppWt × suppZi,t × suppUi,t → suppYi,t is an unknown structural function, where supp

3Although many papers typically omit an explicit definition of the causal parameters discussed here in

terms of potential outcomes, the empirical literature on policy uncertainty also aims to estimate average

causal effects (see, for example, Giavazzi and McMahon (2012), Pástor and Veronesi (2013), Baker et al.

(2016), and Gulen and Ion (2016)). Our new, formal, identification analysis thus may also contribute to a

better understanding of empirical results from past and future studies on the microeconomic implications of

policy uncertainty.
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denotes the support of the corresponding random variable. We emphasize that the causal

model in (1) is equivalent to conventional potential outcome notation with Yi,t(w, z) ≡

g(w, z, Ui,t).
4 We choose to use the latent variable notation instead of potential outcome

notation as it simplifies the statement and discussion of the assumptions below.5

The key feature of the causal model is that the macroeconomic variable Wt differs only

by time but not across individuals. The model further allows the exposure variable Zi,t to

differ across time, which fits best with the health shocks used in our empirical application. In

other applied settings, however, exposure may be time-invariant. The identification analysis

simplifies slightly with time-invariant exposure variables but the main results are unaffected.

The primary parameter of interest is the average causal effect (ACE) on the microeco-

nomic outcome Yi,t of a hypothesized shift in the macroeconomic variable Wt from w to w′.

Let ∆i,t(w
′, w, z) ≡ g(w′, z, Ui,t)−g(w, z, Ui,t) – or equivalently in potential outcome notation

∆(w′, w, z) ≡ Yi,t(w
′, z) − Yi,t(w, z) – denote the causal effect for the ith individual at time

t with fixed exposure value z. The ACE is then defined by

ACE(w′, w) ≡ E[∆i,t(w
′, w;Zi,t)], (2)

where the expectation is with respect to both the observed exposure as well as the unob-

servables. In cross-sectional settings with a binary treatment, the parameter defined in (2)

is frequently referred to as the “average treatment effect.” We use the slightly more general

terminology “average causal effect” as a macroeconomic variable is rarely thought of as a

“treatment.”

4As (Wt, Zi,t, Ui,t), determine Yi,t deterministically, this causal model is also referred to as the “all

causes” model (see, e.g., Heckman and Vytlacil, 2007).

5While the identification analysis of the main text places no parametric assumptions on the potential

outcomes, helpful intuition regarding the identifying assumptions and the resulting arguments can be gained

from considering a simpler linear causal model with unobserved heterogeneity. Online appendix S.2 presents

the identification analysis in this simpler setting.

7



The second parameter of interest is the conditional average difference of causal effects

(DCE) between two fixed subgroups with exposure values at z and z′:

DCE(w′, w, z′, z) ≡ E[∆i,t(w
′, w, z′)−∆i,t(w

′, w, z)|Zi,t = z′]. (3)

In contrast to the ACE which describes the overall expected causal effect, the DCE captures

relative differences in causal effects between subgroups at different exposure levels. It thus

allows the highlighting of groups of individuals that are affected more (or less) severely than

others. Importantly, however, the DCE does not identify levels of effects. That is, the

magnitude or sign of the DCE between two subgroups does not allow for conlusions about

the magnitude or sign of causal effects on either group separately.

There are two key challenges for identification of the ACE and DCE. First, because the

macroeconomic variable Wt is invariant across individuals for any point in time, for each

period t it is only ever possible to observe either Wt = w′ or Wt = w but never both. As-

sumptions that allow for extrapolation across time are thus needed for identification. Second,

because the expectations in (2) and (3) are with respect to both the exposure variable and

the unobservables, they cannot be identified from the data alone. Additional assumptions

restricting the joint distribution of observables and unobservables are thus needed.

The approach developed in this paper proposes a new set of identifying assumptions

to address the abovementioned challenges. Assumption 1 assumes stationarity of the condi-

tional distribution of unobservables Ui,t. Stationarity is frequently maintained in the analysis

of time series and serves here as an extrapolation device, allowing us to overcome the first

identification challenge – that only a single value of the macroeconomic variable Wt is realized

at any point in time.6

6Despite stationarity being a common assumption in the analysis of time series, it is an economically

substantive restriction on the data generating process. For example, while Assumption 1 is sufficiently

weak to allow for trends in both observable and unobservable variables, structural breaks in the dependence

between the macroeconomic variable of interest and other unobserved time series would violate Assumption

1. The supplemental online appendix S.3 presents identification results without the stationarity assumption,
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Assumption 1 (Stationarity)

For two time periods t, t′ ∈ T , Ui,t′ |Wt′ , Zi,t′
d
= Ui,t|Wt, Zi,t.

Assumption 2 ensures that the exposure variable is sufficiently exogenous. In particular,

it requires that for any fixed subgroup, changes in the expected outcome due to changes in

the macroeconomic variable of interest are mean-independent of the exposure variable. It

thus restricts the conditional distribution of unobservables given the macroeconomic variable

to be sufficiently independent of exposure. Note that this is a parallel trends assumption

where Zi,t takes the role of treatment, and where instead of restricting trends for only the

untreated potential outcomes, trends for all subgroups are independent of Zi,t.
7 Impor-

tantly, Assumption 2 does not restrict the dependence between levels of the outcome and

the exposure variable (i.e., there is no exclusion restriction).8

Assumption 2 (Parallel Changes)

∀w′, w ∈ suppWt, z ∈ suppZi,t, E [g(w′, z, Ui,t)|Wt = w′, Zi,t] − E [g(w, z, Ui,t)|Wt = w,Zi,t]

does not depend on Zi,t.

Our key identifying assumption is Assumption 3. It restricts the unobserved heterogeneity

in the effects of the exposure variable on the outcome. In particular, it implies that there

should be no dependence between the unobserved heterogeneity in the effects of the exposure

variable on the outcome and the macroeconomic variable of interest. To gain intuition

for why this assumption is crucial, suppose that the exposure variable affects individual

highlighting that causal inference remains possible but that interpretation must take into account non-

stationary unobservable distributions. In particular, focusing on the setting with time-invariant exposure

variables, we analyze identification of the causal parameter E[g(w′, Zi, Ui,t′) − g(w,Zi, Ui,t)] which can be

decomposed into the ACE at time t plus the change in the distribution of unobservables from time t to time

t′: E[g(w,Zi, Ui,t′)− g(w,Zi, Ui,t)].

7To see the parallel trends analogy more clearly, let Y w
i,t(z)

d
= g(w, z, Ui,t)|Wt = w. Then Assumption 2

can equivalently be expressed as E[Y w′

i,t (z)− Y w
i,t(z)|Zi,t] = E[Y w′

i,t (z)− Y w
i,t(z)].

8Assumption 2 is immediately implied when exposure is randomly assigned, i.e., when Zi,t ⊥⊥ (Ui,t,Wt).
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responses to two correlated macroeconomic time series, say health care policy uncertainty

and general economic uncertainty, of which only the former is observed (i.e., Wt) and the

latter is unobserved (i.e., in Ui,t). Differences in individuals’ outcomes with varying exposure

levels can then not be uniquely attributed to changes in either of the two macroeconomic

variables.

Assumption 3 (Exogenous Differences in the Effects of Exposure)

∀w ∈ suppWt, z
′, z ∈ suppZi,t, E [g(w, z′, Ui,t)− g(w, z, Ui,t)|Wt, Zi,t = z] does not depend

on Wt.

Assumption 3 does not restrict all unobserved heterogeneity in the effects of Zi,t. Un-

observed heterogeneity that is independent of Wt (e.g., idiosyncratic household preferences

independent of the current state of the macroeconomy) is allowed for. Importantly, Assump-

tion 3 does not restrict the unobserved heterogeinty in the effects of the macroeconomic

variable. To further illustrate Assumption 3 and the types of unobserved heterogeneity it

restricts, it is useful to consider examples of functional forms for the structural function g

that satisfy or violate the assumption.9 For ease of discussion, let Ui,t ≡ (U
(1)
i,t , U

(2)
i,t ), where

the unobservables U
(1)
i,t are left unrestricted and and the unobservables U

(2)
i,t are idiosyncratic

shocks (i.e., U
(2)
i,t ⊥⊥ (Wt, Zi,t)). Consider first

g1(Wt, Zi,t, Ui,t) = g̃1(Wt, Ui,t) + g̃2(Wt, Zi,t, U
(1)
i,t ),

where g̃1 and g̃2 are arbitrary functions. It is easy to confirm that g1 satisfies Assumption

3. In contrast, g1(Wt, Zi,t, Ui,t) +Zi,tU
(1)
i,t does not generally satisfy Assumption 3 due to the

final interaction term between the exposure variable and components of Ui,t that are not

(necessarily) independent of the macroeconomic variable Wt.

Note that both Assumption 2 and Assumption 3 are not invariant to transformations

of the outcome. For example, if the assumption holds for the untransformed g, it does not

9Online appendix S.2 which considers identification in a linear causal model provides further discussion

on the nature of the restriction of unobserved heterogeneity.
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generally hold for the composite function log ◦ g. This caveat is analogous to the sensitivity of

parallel trends assumptions in conventional difference-in-difference designs (see, for example,

Roth and Sant’Anna, 2020).

Finally, we assume common support to ensure all the conditional expectation functions

are well-defined.

Assumption 4 (Common Support)

fWZ(w, z) > 0, ∀w ∈ suppWt, z ∈ suppZi,t, where fWZ denotes the joint density.

2.2. Identification

Our first identification result is Theorem 1. Here and throughout, we understand identi-

fication to mean expressing an unknown parameter as a known function of the distribution

of observables only (i.e., identification in the sense of Hurwicz, 1950). Theorem 1 shows that

the DCE equals differences in conditional expectation functions of Yi,t given (Wt, Zi,t) and

therefore implies point identification.

Theorem 1 (Point Identification of the DCE)

Suppose that Assumptions 1 to 4 hold. Then, ∀w′, w ∈ suppWt, z
′, z ∈ suppZi,t,

DCE(w′, w, z′, z) = (E[Yi,t′ |Wt′ = w′, Zi,t′ = z′]− E[Yi,t|Wt = w,Zi,t = z′])

− (E[Yi,t′ |Wt′ = w′, Zi,t′ = z]–E[Yi,t|Wt = w,Zi,t = z]).

Proof. Provided in Appendix S.1.

Theorem 1 further indicates that the conditional average causal effects are not generally

point identified by differences in conditional expectation functions. This non-identification

of levels is due to the absence of a non-treated group whose effect of treatment would be

known to be zero. In particular, as without a non-treated group E [∆i, t(w′, w, z)|Zi,t = z′]

may take any value on the real line, so may the conditional average causal effect for the

subgroup with Zi,t = z′. This loss of identification in levels is akin to the loss of identifica-

tion of the average treatment effect on the treated in fuzzy difference-in-difference designs
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when treatment proportions increase in all subgroups (De Chaisemartin and d’Haultfoeuille,

2018).10

Non-identification of levels from Theorem 1 rests on the presumption that subgroup-

specific effects of the macroeconomic variable on the microeconomic outcome may take any

value. However, such conservativeness is not always necessary. Our main result, stated in

Theorem 2, below combines sign restrictions on subgroup-specific causal effects with Assump-

tions 1 to 4 to show that a sharp bound on the primary parameter of interest – the average

causal effect of the macroeconomic variable as defined in Equation (2) – can be identified.

We focus on restrictions on the expected difference in potential outcomes E[∆i,t(w
′, w, z)]

for all subgroups z ∈ suppZi,t.
11

Theorem 2 (Partial Identification of the ACE)

Suppose that Assumptions 1-4 hold. Take w′ ≥ w ∈ suppWt.

• If in addition E[∆i,t(w
′, w, z)] ≥ 0,∀z ∈ suppZi,t, then

ACE(w′, w) ≥ max
z∈suppZi,t

E
[
DCE(w′, w, Zi,t, z)

]
.

• If instead, in addition E[∆i,t(w
′, w, z)] ≤ 0, ∀z ∈ suppZi,t, then

ACE(w′, w) ≤ min
z∈suppZi,t

E
[
DCE(w′, w, Zi,t, z)

]
.

Proof. Provided in Appendix S.1.

Restrictions for subgroup-specific average causal effects as required for the bounds in

Theorem 2 are frequently plausible in macroeconomic settings. As briefly mentioned in

the introduction, for example, Baker et al. (2016) consider the effect of economic policy

uncertainty on firm investment, which may be expected to be weakly negative regardless

10De Chaisemartin and d’Haultfoeuille (2018) provide bounds for their primary parameter of interest,

the “local” average treatment effect, based on support restrictions of the outcome variable. In contrast, the

bounds provided in Theorem 2 are based on sign restrictions of subgroup-specific average causal effects.

11Alternatively, we may instead restrict the effect only for a subset of subgroups Z. Theorem 2 can

then be adapted by replacing suppZi,t with Z in the maximization/minimization in the formulation of the

bounds. 12



of firms’ revenue from government contracts. More formally, we draw from literature on

background risk to motivate weakly negative effects of health care policy uncertainty on

households’ relative investment in risky assets in Section 3. In the supplemental online

appendix S.9, we further consider the effect of health care policy uncertainty on households’

consumption expenditures. Bounds on the subgroup-specific causal effect in the consumption

setting are motivated by the literature on precautionary savings (e.g., Zeldes, 1989; Kimball,

1990).12

Note that if E[∆i,t(w
′, w, z)] ≥ 0, ∀z ∈ suppZi,t, Theorem 2 and the definition of the

DCE also imply that

ACE(w′, w) ≥ max
z∈suppZi,t

E[∆i,t(w
′, w, Zi,t)−∆i,t(w

′, w, z)] ≥ 0.

Therefore, the sign restriction along with Assumptions 1-4 immediately imply a weakly

positive ACE. (The argument for weakly negative subgroup effects is analogous.) This direct

bound does not leverage any information in the data, however, and would thus not allow

for deeper quantitative insights regarding the magnitude of the macroeconomic variable. In

many cases, therefore, it may be only marginally preferable to the most trivial of bounds

(i.e., a bound from negative to positive infinity). The difference between the bound provided

in Theorem 2 to this zero-valued bound depends crucially on the extent to which Zi,t affects

exposure to changes in the macroeconomic variable. If Zi,t does not affect exposure, our

bound does not improve on the zero-valued ACE bound. On the other hand, the greater

the heterogeneity in responses induced by the exposure variable, the more informative the

bound on the average causal effect provided above. For practical usefulness, the choice of

12In some settings, more precise information about (some) subgroup-specific effects is available. These

may allow for point identification of the ACE under the conditions of Theorem 2. For example, Giavazzi and

McMahon (2012) argue in their analysis of Germany’s 1998 national election on households’ savings that civil

servants were not directly affected by the political candidates’ policy differences, motivating a non-treated

group with known zero-valued effect. Lemma 1 in Appendix S.1 then provides point identification of the

corresponding ACE.
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a relevant exposure variable is therefore important. We highlight, however, that unlike in

weak instrument settings, there are no theoretical concerns about irrelevant Zi,t. Existence

of strong exposure variables is therefore not an assumption we require for identification or

estimation.

2.3. Estimation

Estimation of the DCE for a shift of the macroeconomic variable from w to w′ and

subgroups with exposure values z and z′ as identified in Theorem 1 involves estimation

of four conditional expectations: E[Yi,t′ |Wt′ = w′, Zi,t′ = z′], E[Yi,t|Wt = w,Zi,t = z′]),

E[Yi,t′ |Wt′ = w′, Zi,t′ = z], and E[Yi,t|Wt = w,Zi,t = z]. In the absence of functional form

assumptions on the structural function g, these conditional expectations can be estimated via

nonparametric estimators such as series regression or kernels. Standard asymptotic theory

for these nonparametric estimators then conveniently applies to estimators of the DCE.

A point estimate for the bound of the ACE can be constructed by sample averages of

DCE estimates over the empirical marginal distribution of the exposure variable and then

choosing the maximum (or minimum) value over possible values of the fixed exposure level z.

Statistical inference for this estimator is challenging, however, due to the maximization (or

minimization) operator. Developing asymptotic theory for estimators of the sharp bound of

Theorem 2 lies outside the scope of this paper. We emphasize, however, that simple standard

error estimators are available when researchers pre-select a value of the exposure variable,

say z̃, which is used in place of the arg max (or arg min) when constructing the bound. In

that case, the bound is again simply a difference in conditional expectation estimators, and

the same readily-available standard error methods as for the DCE apply. This simplification

of statistical inference comes at a loss of sharpness (i.e., the bounds are more conservative

than they need to be), but this loss is expected to be minor if researchers have a reasonable

guess about which value of the exposure variable z̃ is close to the arg max (or arg min) of the

subgroup-specific shift in outcomes – i.e., for the arg max, a value z̃ ∈ suppZi,t such that
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E[∆i,t(w
′, w, z̃)] ≈ max

z∈suppZi,t

E[∆i,t(w
′, w, z)].

We adopt this approach to statistical inference for the bound on the ACE in our empirical

application about the effect of health care policy uncertainty, where a value for z̃ naturally

arises from those households with the least severe health shocks.

3. Empirical Setting and Data

This section relates the identification approach developed in the previous section to our

empirical analysis of health care policy uncertainty and outlines construction of the empirical

variables from data. The corresponding data citations are provided in the supplemental

online appendices S.4.

3.1. Health Care Policy Uncertainty

The macroeconomic variable of interest (i.e., Wt) is health care policy uncertainty and

we are interested in how this variable affects individuals’ portfolio allocations. Our empirical

analysis is based on the computer driven, news-based health care policy uncertainty index

developed by Baker et al. (2016), equal to the proportion of articles in the Access World

News newspaper archive with the word triplets “uncertain”, “economic”, and “policy” (and

their synonyms) as well as at least one term related to health care – e.g., “Medicaid,” “health

insurance,” or “Obamacare.”13 The health care policy uncertainty index is one of several

categorical indices developed by Baker et al. (2016) along with their (general) economic

policy uncertainty index. These news-based economic policy uncertainty indices have been

used in a vast amount of policy uncertainty literature, for example to examine the effect of

policy uncertainty on firms (e.g., Pástor and Veronesi, 2013; Baker et al., 2016; Gulen and

Ion, 2016) and on other macroeconomic time series (e.g., Stock and Watson, 2012).

13Additional terms are “health care”, “Medicare”, “malpractice tort reform”, “malpractice reform”, “pre-

scription drugs”, “drug policy”, “food and drug administration”, “FDA”, “medical malpractice”, “prescrip-

tion drug act”, “medical insurance reform”, “medical liability”, “part d”, and “affordable care act.”
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Figure 1 shows the health care policy uncertainty index between 1992 and 2017, and

its average over the preceding 12 months. The average is characterized by four substantive

increases that can be linked to health care policy efforts in the US.

Figure 1
Health Care Policy Uncertainty Index 1992 – 2017
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Notes. The Baker et al. (2016) index plotted in this figure reflects the scaled monthly number of newspaper
articles containing the word-triplet “uncertain”, “economic”, and “policy” (and their synonyms) and one
term on health care (e.g., “health insurance”). It is calculated on basis of the Access World News newspaper
archive with about 1,500 US papers, normalized to a mean of 100 from 1985 to 2010. The dashed line is
the index’s average based on the preceding 12 months. The shaded areas represent NBER recession periods.
Baker et al. (2016) provide a similar figure of the health care policy uncertainty index until January 2015.
We update the authors’ figure through December 2017, adding also the series’ 12-month average and NBER
recession bars.

3.2. Portfolio Choice

The empirical analysis aims to assess the effect of health care policy uncertainty on

households’ portfolio choice. The outcome variables (i.e., Yi,t) we focus on are the shares of

risky assets (stocks and mutual funds) and safe assets (checking and savings accounts, CDs,

government savings bonds and T-bills) as a proportion of total financial wealth.

We construct risky and safe asset share outcome variables from the asset data of the

Health and Retirement Study (HRS), a biennial comprehensive, nationally representative
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longitudinal panel of noninstitutionalized US residents over age 50.14 The older population

is a particularly relevant sample of the US population due to its large share of total wealth

and financial asset investment, as emphasized by the vast literature using the HRS for

analysis of portfolio choice (e.g., Rosen and Wu, 2004; Goldman and Maestas, 2013). It

is also the population for whom health care policy uncertainty is likely to be particularly

salient, as individuals in the second half of their lives approach decreasing income, wealth

decumulation and declining health. Due to differences in definitions of important variables,

we omit the first wave of the HRS and use the remaining eleven waves (1994-2014).15 We

merge the household data with the 12-month average of the health care policy uncertainty

index preceding the end date of the month of each household’s HRS interview.

3.3. Health Shocks

Empirical analysis of the effect of health care policy uncertainty on households’ portfolio

choice poses difficult identification challenges – highlighted in the introduction – that we

address with the identification approach developed in the preceding section. The exposure

variable (i.e., Zi,t) to health care policy uncertainty that we consider is unexpected changes

to health (or “health shocks”). Health shocks are an attractive choice for the exposure

variable in our empirical application as existing literature suggests meaningful heterogeneity

in households’ responses to health care policy uncertainty motivated by two key mechanisms.

14The two other potential asset categories – bonds and retirement accounts – are not analyzed because

the IRA account information in the HRS does not allow for sufficiently detailed risk-classification and only

a small fraction of financial wealth is held in bonds. This paper’s separate consideration of risky asset

investments outside of retirement accounts is in line with existing literature, which further points out that

IRA assets may be relatively illiquid for some households (e.g., due to costs of adjusting retirement portfolios)

and may suffer from measurement error, see, for example, Rosen and Wu (2004) and Love and Smith (2010).

Further, shares of financial assets are calculated as a proportion of total financial wealth rather than all

assets, as non-liquid wealth (e.g., housing wealth) is not readily adjustable (Goldman and Maestas, 2013).

15As a condition of use, we note that: “The HRS is sponsored by the National Institute on Ageing (grant

number NIA U01AG009740) and is conducted by the University of Michigan.”
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First, because uncertainty in health care policy implies higher medical expenditure risk

under worsening health, houeseholds may decrease their exposure to rate of return risk in

response to a health shock.16 Second, unexpected worsening health may lower households’

expected lifespan and consumption utility (Smith, 1999), mitigating their responsiveness to

any disposable income risk. Because the practical usefuleness of a bound on the average

causal effect depends crucially on the relevance of the exposure variable, as highlighted in

Section 2, existence of both mechanisms is a promising starting point for the empirical

analysis.

The assumptions on the health shocks that suffice for identifying causal effects of health

care policy uncertainty on households’ relative investment in risky assets are those given

in Section 2. In particular, for the DCE, we require first that for any fixed value of the

health shocks, changes in the expected outcome are mean-independent of the health shocks

(Assumption 2). Changes in the expected outcome for households with a severe health shock

had they not had one are assumed to be the same as for households with a non-severe health

shock. Conversely, changes in the expected outcome for households that did not have a

severe health shock had they had one are assumed to be the same as for households that

actually experienced a severe health shock. This assumption is violated if health shocks

are correlated with unobserved household characteristics that can also affect changes in the

expected outcome. To address these concerns, we construct health shocks controlling for key

household demographics – discussed in detail below. Second, we require that health shocks do

not affect households’ responses to unobserved variables that are correlated with health care

policy uncertainty (Assumption 3). Importantly, the assumption imposes that health shocks

do not change how households respond to economic uncertainty (e.g., risk of recession).

This restriction is a key concern in the US, where households’ health insurance and hence

16Empirical evidence for such a mechanism is provided by Atella et al. (2012), who find that health shocks

have a negative effect on demand for risky assets in European countries without universal health care but

find no evidence of an effect in other European countries.
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exposure to medical expenditure risk is often linked to employment. Our analysis of older

households aims to address this issue: With the majority of the sample in retirement, most

households we analyze are not subject to risk of greater exposure to medical expenditures

due to potential job loss. Further, as illustrated by Smith (1999), labor supply will not be

substantially altered by health shocks during retirement, and income from Social Security

and pensions will remain fixed (i.e., not related to health).

In addition to the assumptions used for the DCE, we require a sign restriction on

subgroup-specific causal effects as in Theorem 2 for the bound of the ACE. In the health

care policy uncertainty context, we motivate this sign restriction with economic theory on

background risk, which formalizes households’ portfolio choice in an environment of multiple

risks. Pratt and Zeckhauser (1987), Kimball (1993), and Gollier and Pratt (1996) provide

definitions of risk aversion which imply that households that are exposed to an undiversi-

fiable risk are less willing to bear other types of risk, including rate-of-return risk. Health

care policy uncertainty is such an undiversifiable risk because insufficient health care cov-

erage can magnify the large out-of-pocket medical expenditures that frequently accompany

health shocks in the United States. Under the assumption that households in our sample

are risk averse regardless of the potential health shock (i.e., that health shocks never make

households risk-loving), this implies, in particular, that the expected causal effects of an

increase in health care policy uncertainty on relative demand for risky assets are bounded

above by zero – i.e., E[∆i,t(w
′, w, z)] ≤ 0,∀z ∈ suppZi,t – and thus allows for the application

of Theorem 2. An equivalent argument implies that the expected causal effects of health

care policy uncertainty on the relative demand for safe assets are bounded below by zero.

Construction of the health shocks from data requires careful discussion because health is

an intrinsically unobserved variable. Fortunately, a variety of proxies have been suggested

in the literature. Many studies (including the HRS) assess health using survey respondents’

answer to a self-reported question of the form “Would you say your health in general is (1)
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excellent, (2) very good, (3) good, (4) fair, or (5) poor?” Self-reported health measures such

as this 5-point Likert scale variable are frequently used as proxies for health (e.g., Rosen and

Wu, 2004), yet, some doubts remain about the role of potential reporting bias (e.g., Lums-

daine and Exterkate, 2013). As an alternative, some studies have employed more objective

measures of health. For example, Wu (2003) and Berkowitz and Qiu (2006) construct exoge-

nous health shocks given by severe health conditions reported between survey waves. These

shocks are defined by a diagnosis of diabetes, lung disease, cancer or malignant tumor growth,

or experiencing a stroke or heart problems.17 Other frequently-used measures are the prox-

ies given by self-reported limitations in Activities of Daily Living (ADLs) and Instrumental

Activities of Daily Living (IADLs). Five and three of these, respectively, are asked of the

respondents in the HRS, capturing possible impairments of respondents to (1) bathe, (2) eat,

(3) dress, (4) walk across a room and (5) get in and out of bed, as well as

(1) use a telephone, (2) take medication, and (3) handle money. To complement these

measures of physical ability, Fan and Zhao (2009) consider a separate variable to capture a re-

spondents’ mobility, summing indicators that are equal to one if the respondent has difficulty

(1) walking one block, (2) sitting for two hours, (3) getting up from a chair, (4) climbing a

flight of stairs, (5) stooping or kneeling, or (6) lifting and carrying 10 lbs.

Lack of consensus as to which proxy is preferable in the literature motivates a flexible

approach. We construct quasi-random health shocks under the assumption that households’

health expectations are reasonably approximated by a linear first-order Markov process.

This approach is a relaxation of the first-difference construction of health shocks as in Wu

(2003) and Berkowitz and Qiu (2006) as it allows for simultaneous consideration of mul-

tiple health proxies as well as heterogeneous health expectations conditional on observed

household characteristics. In addition, it addresses the need to condition on household de-

mographics related to health. Using a VAR that simultaneously considers all health variables,

17‘Mild’ conditions such as high blood pressure and arthritis also are reported in the HRS. Following the

literature, they are not included in the analysis.
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we estimate Zi,t − AZit−1 = BXi,t + ϕi,t, where Zi,t is a 5 × 1 vector of integers capturing

(a) a household’s self-reported health measure, (b) the number of limitations reported in the

HRS’ ADL and IADL measures, (c) the cumulative (from the beginning of the sample to

time t) number of severe health conditions, (d) the current number of limitations to mobility,

and (e) the number of nights spent in a hospital during the previous two years, and A and

B are respectively 5 × 5 and 5 × k matrices of fixed and unknown coefficients, where k is

the number of included household characteristics. The 5× 1 vector of residuals, ϕi,t is then

interpreted as an approximation to an unexpected change in the various components of a

household’s health.

We follow earlier literature and analyze single and couple households separately (e.g.,

Wu, 2003; Rosen and Wu, 2004; Berkowitz and Qiu, 2006; Love and Smith, 2010), and

for couple households define the health measures introduced above as the maximum value

across spouses (e.g., Coile and Milligan, 2009; Love and Smith, 2010). Included as controls

for household characteristics are a household’s age, dummy variables for five educational at-

tainment categories, race categories (described below), and wave-specific wealth and income

quartiles. Gender is also included when analyzing single households. For couple households,

controls for highest education level and age are constructed as the maximum of both spouses,

and six race dummy variables are included, based on all possible combinations of the three

categories “White,” “Black”, and “Other” across the two spouses. The purpose of the in-

clusion of these controls is to address primary concerns regarding conditional heterogeneity

in changes in health. The constructed residuals are orthogonal to the included controls and

thus account for possible mechanisms such as a decrease in health with age and associations

between health developments and socio-demographic characteristics.

The health data are merged with the HCPU and financial variables. We then remove from

the sample those households that have no positive holdings of financial assets, are missing

one or more of the above variables, or only occur in a single wave, leaving an analysis
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sample of 45,384 single and 57,190 couple household-wave observations. The supplemental

online appendix S.5 provides detailed documentation of the cleaning steps and the associated

reduction in sample at each stage, as well as complementary summary statistics of household

characteristics.

4. Results

This section presents estimates of the DCE and estimates of the ACE bounds. Although

the identification analysis of these parameters is nonparametric, we focus on estimation

of a varying coefficient model (see, e.g., Hastie and Tibshirani, 1993). This choice has

several important advantages for our particular application.18 On one hand, nonparametric

estimation of varying coefficients allows for rich and highly non-linear heterogeneity in how

health shocks may change the effect of health care policy uncertainty on households’ portfolio

choice. This flexibility is particularly important for construction of informative bounds;

masking this heterogeneity weakly shrinks the bound estimates to zero.19 On the other hand,

it facilitates comparisons with existing empirical literature on effects of policy uncertainty

that primarily relies on linear regression estimates. This is due to holding the effects of

health care policy unctertainty constant for a given health shock. In particular, we consider

Yi,t = β0(Zi,t) + β1(Zi,t)Wt + Ui,t, (4)

where β0 and β1 are unknown functions which we estimate nonparametrically.

In addition to flexible estimation of β1, a choice of the exposure variable Zi,t that captures

more of the heterogeneity of households’ response to health care policy uncertainty will result

18Varying coefficient models have recently been popularized in economics by Athey et al. (2019) and

Farrell et al. (2021).

19Supplemental online appendix S.8 further illustrates the advantages of a flexible varying coefficient ap-

proach by contrasting the results with a simple multiplicative-interaction specification. The multiplicative-

interaction specification substantially restricts the heterogeneity in the effects of health care policy un-

certainty, which masks differences in the subgroup-specific causal effects and thus mitigates the practical

usefulness of the constructed bounds.
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in a more informative bound on the average causal effect. This observation motivates using

the complete set of five distinct health categories (introduced in the preceeding section)

when estimating the ACE bound. Unfortunately, visualization of the DCE conditional on

five variables is difficult. For illustrative purposes regarding the relative distribution of the

causal effect of health care policy uncertainty, we therefore also present results conditioning

on a single health category (resulting in a single-dimensional DCE visualized by a line-plot)

and two health categories (resulting in a two-dimensional DCE visualized by a heatmap).

When conditioning on a single health category, we estimate β0 and β1 using local linear

regression. As traditional conventional semiparametric estimators suffer severely under the

curse of dimensionality when conditioning on multiple variables, we apply the generalized

random forests of Athey et al. (2019) when conditioning on more than one health category.

The procedure allows for flexible interaction between types of health shocks; such flexible

interaction is a priori likely to be a key feature of the DCE, while alleviating the curse

of dimensionality through the inherent regularization of random forests.20 Supplemental

online appendix S.6 provides pseudocode and further details on the implementation of our

estimation and inference procedures.

4.1. Estimates of the Conditional Average Difference in Causal Effects

Figure 2 presents estimates of the conditional average difference in causal effects based on

unexpected changes to severe conditions (top panels) and on unexpected changes to nights

spent in hospital (bottom panels).21 The figures are normalized such that all estimates are

relative to the average causal effect of households that are substantially healthier than ex-

pected, which we define as having a more favorable unexpected change in the respective

20We use the R package of Tibshirani et al. (2020) for random forest-based estimation.

21In the interest of space, estimates for only two of the health categories are presented here. Supplemental

online appendix S.7 provides analogous figures for the other health categories we consider.
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health category than 95% of households in the sample.22 Note that because larger values

for the health categories indicate worse health, negative values correspond to more favorable

health. The horizontal axes are normalized to standard deviation units of the corresponding

health category for ease of interpretation. The vertical axis shows percentage point differ-

ences in the dependent variable given a 100% increase in health care policy uncertainty –

i.e., the figure plots the estimated values of the coefficients themselves (solid lines), denoted

by β1(Zi,t) in the varying coefficient model (4). For illustrative purposes, however, it is more

interesting to consider the approximately 70% increase in the index, from the 2016 average

of 110 to the 2017 average of 191 (see also Figure 1). The latter year is associated with

the extensive political efforts to repeal the Affordable Care Act. The dashed lines indicate

bootstrapped 99% uniform confidence bands.23

The estimates indicate substantial heterogeneity in the effect of health care policy un-

certainty with respect to unexpected changes in households’ severe conditions and nights

spent in hospital. Consider a single household with no unexpected changes to severe health

conditions. Compared to a single household that finds itself with substantially fewer se-

vere health conditions than expected, the first household increases its safe asset share by

approximately 3.1 percentage points more, on average, when health care policy uncertainty

increases by 70%. For couple households, the analogous increase in relative demand for safe

assets amounts to 3.3 percentage points.24 Similarly, when health care policy uncertainty

22This normalization is akin to the choice of baseline in a linear regression that includes a constant and

indicators of categorical variables with one (baseline) category suppressed.

23We implement the uniform confidence bands discussed in Montiel Olea and Plagborg-Møller (2019) using

a grid of 100 evenly spaced samples from the horizontal axis as an approximation to the infinite-dimensional

DCE. The bootstrap samples households rather than individual observations. This block bootstrap procedure

thus accounts for dependence within households over time.

24The values are calculated by multiplying the height of the solid DCE curves in the top-left panel of

Figure 2 at the origin of the horizontal axis (i.e., when z = 0) by 0.7.
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Figure 2
Normalized DCE Estimates for Couple and Single Households
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Notes. These figures show the local linear regression-based estimates of the average difference in causal effects

(DCE) of health care policy uncertainty on safe and risky asset share, respectively, conditional on a single

health category, for two specific examples: severe conditions (figures A and B) and nights in hospital (figures

C and D). The estimates presented are relative to the baseline of households that are in substantially better

health than expected, defined here as having a more favorable unexpected change in the corresponding health

category than 95% of households in the sample. The plots are based on B = 1, 000 bootstrap draws, where

the solid lines correspond to the mean and the dashed lines correspond to bootstrapped 99% confidence

bands. Blue lines correspond to couple households and red lines correspond to single households.
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increases by 70%, a single (couple) household with no unexpected changes to severe condi-

tions decreases its risky asset share by approximately 2.2 (2.9) percentage points more than

an analogous household with substantially fewer severe health conditions. That the increase

in safe asset share is only partially offset by the decrease in risky asset share suggests that

households increase their safe asset share not only by decreasing relative investment in stocks,

but also by decreasing relative investment in the two excluded financial asset categories –

bonds and IRA retirement accounts.

When considering instead unexpected changes in nights spent in hospital, the effects are

a little less pronounced. A single (couple) household with no unexpected changes to nights

spent in hospital increases its safe asset share by approximately 2.1 (1.6) percentage points

when health care policy uncertainty increases by 70%, relative to a household with substan-

tially fewer-than-expected nights in hospital. The analogous effects on relative demand for

risky assets are 0.8 and 0.7 percentage points for single and couple households, respectively.

In addition to documenting heterogeneity in the effect of health care policy uncertainty

with respect to unexpected changes in health, Figure 2 also suggests nonlinearities. In

particular, households that are at their expected health level are estimated to react more

strongly to increases in health care policy uncertainty than households that are in either

substantially better or worse health than expected. These estimates are in line with economic

theory on opposing mechanisms on the effect of health due to increased disposable income

uncertainty on one hand and potential loss in consumption utility and/or reduction in life

expectancy on the other (see, e.g., Smith, 1999). Interpreting the results in this fashion

indicates that the risk induced by higher expected health care costs drives the differences

between households that are in better health than expected and those that are at their

expected health. Differences between households that are in worse health than expected

and households that are at their expected health, on the other hand, may be attenuated

by the reduction in life expectancy and utility. Note that the uniform confidence bands in
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Figure 2 cannot reject linearity of the normalized DCE on a 99% confidence level.25 The

point estimates are therefore only suggestive of a nonlinear tradeoff between the two health

mechanisms.

The DCE results so far condition on a single health category, effectively integrating

over all possible interaction effects that may capture additional heterogeneity in households’

response to health care policy uncertainty. In an effort to analyze interactions in two di-

mensions, at least, we compute DCE estimates conditional on both unexpected changes in

severe conditions and nights in hospital. As before, we turn our discussion to comparisons of

households who have no unexpected changes to health with households who are substantially

healthier than expected, which we now define as having a more favorable unexpected change

in each of the two health categories than 95% of households in the sample. Figures S.7.2

and S.7.3 in the Appendix S.7 provide visualizations of the estimates and confidence bands

in the form of heatmaps for both safe and risky asset share, respectively.

Focusing first on the results for relative demand in safe assets, we find that single (cou-

ple) households who have no unexpected changes in both severe conditions and nights in

hospital increase their safe asset share by 3.9 (5.3) percentage points when faced with a 70%

increase in health care policy uncertainty, compared to households who find themselves with

substantially fewer severe conditions and substantially fewer nights in hospital. Similarly,

the results for relative demand in risky assets suggest that single (couple) households who

have no unexpected changes in both severe conditions and nights in hospital decrease their

25The reported uniform confidence bands encompass the set of functional forms of the normalized DCE

that cannot be rejected on a 99% confidence level. Whether this set contains a linear functional form

can be conveniently checked by assessing whether it is possible to draw a straight line segment starting at

the reference point (in our example, the left-most point in the figure) that stays everywhere inside of the

confidence bands without intersecting the bands. Curved confidence bands that are sufficiently tight will

reject linearity, but wide bands cannot regardless of curvature. For further details on inference with uniform

confidence bands see, for example, Montiel Olea and Plagborg-Møller (2019).
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risky asset share by 6.0 (4.9) percentage points when faced with a 70% increase in health care

policy uncertainty, when compared to households with substantially fewer severe conditions

and substantially fewer nights in hospital than expected.

The results indicate the relevance of interactions across different health categories for

explaining heterogeneity in the effect of health care policy uncertainty on households’ port-

folio choice in that the magnitude of the heterogeneous effect is much larger when these

interactions are considered. This motivates using the full set of five health categories for

estimation of the DCE as a first stage parameter for the construction of a bound for the

average causal effect of health care policy uncertainty, to which we turn next.

4.2. Bounding the Average Causal Effect

Table 1 presents estimates of the bounds of the average causal effects of health care policy

uncertainty on the relative demand for risky and safe assets, for couple and single households,

respectively. The estimates are based on bounding the subgroup-expecific average causal

effect by zero for households that are substantially better off than expected, which we again

define here as having a more favorable unexpected change in each of the five health categories

than 95% of households in the sample. Note that this approach results in more conservative

estimates than bounding all households’ subgroup-specific average causal effects by zero,

independent of their health outcomes, which is justified by the assumption of risk averse

agents. Brackets provide bootstrapped one-sided 95% confidence intervals.

Focusing first on the safe asset share results in columns (1) and (2), the estimates suggest

that couple and single households increase their safe asset share by at least 3.5 (= 0.051∗70)

and 2.7(= 0.039 ∗ 70) percentage points, respectively, when faced with a 70% increase in

health care policy uncertainty. Further, columns (3) and (4) indicate that couple and single

households decrease their risky asset share by at least 1.5 and 2.3 percentage points, respec-

tively, when faced with a 70% increase in health care policy uncertainty. With the exception

of the bound for couple households on relative demand for risky assets, the estimates are
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Table 1
Bounds on the Average Causal Effect

Safe Asset Share Risky Asset Share

Couples Singles Couples Singles

(1) (2) (3) (4)

0.051 0.039 -0.022 -0.033

[0.015, ∞) [0.012, ∞) (-∞, 0.005] (-∞, -0.013]

Notes. The table presents estimates of the bound on the average causal

effect (ACE) of health care policy uncertainty. Brackets contain one-

sided confidence intervals covering of 95% of bootstrapped bounds

significant on a 5% confidence level. Taken together, these results suggest that an increase

in health care policy uncertainty shifts households’ portfolio choice towards safe assets in

the population, and – at least for single households – away from risky assets.

This inference comports with results from earlier studies. Also analyzing HRS data,

Rosen and Wu (2004), Edwards (2008), and Love and Smith (2010), for example, respectively

find that rating health in the worst category of the subjective health measure is associated

with a 1%, 7%, and 1.8% decrease in the risky asset share. Our results thus show that

a 70% increase in health care policy uncertainty, as has occurred between 2016 and 2017,

shifts the relative demand for risky assets by at least as much as a considerable reduction

in households’ health, highlighting the importance of health care policy uncertainty as a

determinant of households’ relative demand for risky assets.

5. Conclusion

In this paper, we develop a new causal identification approach in the context of investigat-

ing a macroeconomic variable and its effect on microeconomic outcomes. The key challenge

in this setting is that the endogenous macroeconomic variable varies only by time but not
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cross-sectionally which renders conventional difference-in-difference designs inapplicable. In-

stead, we consider identification using an exogenous variable that shifts responsiveness to the

macroeconomic variable of interest without shifting responsiveness to other macroeconomic

time series. We provide sufficient conditions for point identification of the average difference

in causal effects between population subgroups and show how sign restrictions derived from

economic theory allow for partial identification of the average causal effect. We then apply

the proposed methodology to study the effect of health care policy uncertainty on house-

holds’ portfolio choice. Our empirical results suggest substantial nonlinear heterogeneity in

the causal effect of health care policy uncertainty on households’ safe and risky asset share

with respect to unexpected changes in health. The estimates further indicate that health

care policy uncertainty has statistically and economically significant effects on households’

financial behavior in the population of older US households.

The empirical analysis shows that an uncertainty increase similar to that associated with

efforts to repeal the Affordable Care Act in 2017 decreases the relative demand for stocks

and mutual funds by as much as a considerable reduction in health (e.g., Rosen and Wu,

2004). Given the large share of financial assets that older American couples in the HRS data

have, the reduction in stock market participation may have direct implications for stock

market volatility and the equity premium. Further, health care policy uncertainty appears

to disproportionally affect households with unexpected adverse changes to health, which may

exacerbate the socio-economic disadvantage associated with bad health in the US (Smith,

1999).

The recent COVID-19 pandemic has resulted in an unprecedented increase in economic

and health care policy uncertainty (Altig et al., 2020). As countries begin to emerge from

the COVID-19 pandemic, policymakers have sought to develop policies aimed at stimulating

the economy, even as they continue to introduce measures to curtail the virus. These dual

policy objectives also create a great deal of uncertainty for households. As health care
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policy likely remains at the center of political debates in the United States and elsewhere for

the foreseeable future, further research into the macroeconomic implications of these policy

discussions is necessary to assess potentially unintended consequences of political discourse.

Our paper provides a flexible identification and estimation approach for analyzing such

implications.
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S.1. Proofs

This appendix provides the proofs of Theorem 1 and Theorem 2.

A.1. Proof of Theorem 1

Using standard probability calculus, we have

(E[Yi,t′ |Wt′ = w′, Zi,t′ = z′]− E[Yi,t|Wt = w,Zi,t = z′])

− (E[Yi,t′|Wt′ = w′, Zi,t′ = z]− E[Yi,t|Wt = w,Zi,t = z])

[1]
=(E[g(w′, z′, Ui,t′)|Wt′ = w′, Zi,t′ = z′]− E[g(w, z′, Ui,t)|Wt = w,Zi,t = z′])

− (E[g(w′, z, Ui,t′)|Wt′ = w′, Zi,t′ = z]− E[g(w, z, Ui,t)|Wt = w,Zi,t = z])

[2]
=(E[g(w′, z′, Ui,t′)|Wt′ = w′, Zi,t′ = z′]− E[g(w′, z, Ui,t′)|Wt′ = w′, Zi,t′ = z])

− (E[g(w, z′, Ui,t)|Wt = w,Zi,t = z′]− E[g(w, z, Ui,t)|Wt = w,Zi,t = z])

[3]
=(E[g(w′, z′, Ui,t)|Wt = w′, Zi,t = z′]− E[g(w′, z, Ui,t)|Wt = w′, Zi,t = z])

− (E[g(w, z′, Ui,t)|Wt = w,Zi,t = z′]− E[g(w, z, Ui,t)|Wt = w,Zi,t = z])

[4]
=(E[g(w′, z′, Ui,t)|Wt = w′, Zi,t = z′]− E[g(w′, z, Ui,t)|Wt = w′, Zi,t = z′])

+ (E[g(w′, z, Ui,t)|Wt = w′, Zi,t = z′]− E[g(w′, z, Ui,t)|Wt = w′, Zi,t = z])

− (E[g(w, z′, Ui,t)|Wt = w,Zi,t = z′]− E[g(w, z, Ui,t)|Wt = w,Zi,t = z′])

− (E[g(w, z, Ui,t)|Wt = w,Zi,t = z′]− E[g(w, z, Ui,t)|Wt = w,Zi,t = z])

[5]
=(E[g(w′, z′, Ui,t)− g(w′, z, Ui,t)|Wt = w′, Zt = z′])

− E[g(w, z′, Ui,t)− g(w, z, Ui,t)|Wt = w,Zi,t = z′])

[6]
=(E[g(w′, z′, Ui,t)− g(w′, z, Ui,t)|Zi,t = z′]− E[g(w, z′, Ui,t)− g(w, z, Ui,t)|Zi,t = z′]

where [1] substitutes for Yi,t = g(Wt, Zi,t, Ui,t), [2] rearranges terms, [3] follows from As-

sumption 1, [4] both adds and subtracts the two terms E[g(w′, z, Ui,t)|Wt = w′, Zi,t = z′]

and E[g(w, z, Ui,t)|Wt = w,Zi,t = z′], [5] follows from Assumption 2, and [6] follows from

1



Assumption 3. Finally, by rearranging terms and using the definition of the DCE in (3)

DCE(w′, w, z′, z) = E[g(w′, z′, Ui,t)− g(w′, z, UI,t)− (g(w, z′, Ui,t)− g(w, z, Ui,t)) |Zi,t = z′]

which completes the proof. �

A.2. Proof of Theorem 2

We begin the proof of Theorem 2 with a simple lemma.

Lemma 1

Suppose that Assumption 1-4 hold. Then, ∀z ∈ suppZi,t,

ACE(w′, w) = E
[
DCE(w′, w, Zi,t, z)

]
+ E[g(w′, z, Ui,t)− g(w, z, Ui,t)].

Proof of Lemma 1

By Theorem 1, we have

E[g(w′, z′, Ui,t)− g(w, z′, Ui,t)|Zi,t = z′]

=DCE(w′, w, z′, z) + E[g(w′, z, Ui,t)− g(w, z, Ui,t)|Zi,t = z′].

Integrating z′ over the marginal of Zi,t (which by Assumption 1 is the same as the marginal

of Zi,t′) and using the law of iterated expectations then results in

E[g(w′, Zi,t, Ui,t)− g(w,Zi,t, Ui,t)]

=E
[
DCE(w′, w, Zi,t, z)

]
+ E[g(w′, z, Ui,t)− g(w, z, Ui,t)].

The desired result then follows from the definition of the ACE in Equation (2). �

To complete the proof of Theorem 2, note that when E[g(w′, z, Ui,t′) − g(w, z, Ui,t′)] ≥

0,∀z ∈ suppZi,t, we have that

ACE(w′, w) =E
[
DCE(w′, w, Zi,t, z)

]
+ E[g(w′, z, Ui,t)− g(w, z, Ui,t)]

⇒ ACE(w′, w) ≥E
[
DCE(w′, w, Zi,t, z)

]
,

where the first equation follows from Lemma 1, and the inequality follows from E[g(w′, z, Ui,t′)−

2



g(w, z, Ui,t′)] ≥ 0,∀z ∈ suppZi,t. Because the inequality holds for all z ∈ suppZi,t, we also

have

ACE(w′, w) ≥ max
z∈suppZi,t

E
[
DCE(w′, w, Zi,t, z)

]
,

which is the desired result.

The argument for E[g(w′, z, Ui,t′) − g(w, z, Ui,t′)] ≤ 0,∀z ∈ suppZi,t is identical and

omitted here for brevity. �
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S.2. Identification in a Linear Causal Model

This section presents results on the identification of causal effects of a macroeconomic

variable on a microeconomic outcome in a simplified version of the nonparametric causal

model discussed in Section 2. We consider the random vector (Yi,t,Wt, Zi,t, ξ
w
i,t, ξ

z
i,t, ξ

wz
i,t , εi,t)

whose joint distribution is characterized by the causal model

Yi,t = Wt(β
w + ξwi,t) + Zi,t(β

z + ξzi,t) +WtZi,t(β
wz + ξwzi,t ) + εi,t, (S.2.1)

where βw, βz, and βwz are unknown fixed coefficients. As in the main text, Yi,t denotes the

outcome of individual i ∈ N at time t ∈ T , Wt is the macroeconomic variable of interest,

and Zi,t is the exposure variable. εi,t are unobserved determinants of the outcome and the

random vector (ξwi,t, ξ
z
i,t, ξ

wz
i,t ) captures unobserved heterogeneity.

The main parameter of interest is the expected change in the outcome caused by a

marginal change in Wt:

τw ≡ (βw + E
[
ξwi,t
]
) + E

[
Zi,t
(
βwz + ξwzi,t

)]
If Wt were randomly assigned, this would simply be the coefficient obtained from a regression

of Yi,t on Wt. In a macroeconomic setting, Wt often is not randomly assigned. In particular,

the approach we pursue allows for correlation between εi,t and Wt, making identification

of the main effect of Wt challenging. To make progress, we proceed in two steps. First,

we provide assumptions to identify the difference in the effect of Wt between two levels of

exposure to Zt, z
′ and z. This difference is defined by

∆τw(z′, z) ≡(βw + E
[
ξwI,t|Zi,t =′′

]
) +′′

(
βwz + E

[
ξwzi,t |Zi,t =′′

])
– − (βw + E

[
ξwi,t|Zi,t = z

]
) + z

(
βwz + E

[
ξwzi,t |Zi,t = z

])
.

(S.2.2)

τw(′′, z) captures differences in the effect of marginal changes in Wt on the outcome from two

levels of exposure, ′′ and z. The difference may itself be interesting as it allows for assessment

of distributional changes across groups caused by changes in Wt.
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The parameter τw(′′, z) is similar to the average treatment effect on the treated that is

often the target in difference-in-difference designs. However, unlike in conventional difference-

in-difference designs, there exists no natural non-treated group in the setting considered here.,

i.e., there does not exist a known z such that

τw(z) ≡ (βw + E
[
ξwi,t|Zi,t = z

]
) + z

(
βwz + E

[
ξwzi,t |Zi,t = z

])
= 0.

Motivated by the background risk literature in the empirical application to health care policy

uncertainty, we instead consider the slightly more general setting with known sign-restrictions

for subsets the exposure level, that is, where

τw(z) ≥ 0, or τw(z) ≤ 0, ∀z ∈ Z ⊂ suppZ.

Our second result shows that sign restrictions of this form then allow for partial identification

of the main effect of Wt, τw.

We now state assumptions analogous to those in the main text. First, Assumption 1’

restricts the distribution of unobserved heterogeneity to be stationary.

Assumption 1’ (Stationarity)

suppZi,t is time invariant and for all z ∈ suppZi,t, (i) E[ξwzi,t′ |Zi,t′ = z] = E[ξwzi,t |Zi,t = z].

(ii) E[ξwi,t′|Zi,t′ = z] = E[ξwi,t|Zi,t = z]. (iii) E[ξzi,t′|Zi,t′ = z] = E[ξzi,t|Zi,t = z].

Second, the exposure levels are mean-independent of the unobserved determinants of εi,t

conditional on the macroeconomic variable.

Assumption 2’ (Exogenous Exposure)

E[εi,t|Wt, Zi,t] = E[εi,t|Wt].

Third, unobserved heterogeneity in the effects of both the macroeconomic variable Wt and

the exposure variable Zi,t does not depend on Wt. Assumption 3’ is stronger than necessary.

In particular, it is possible to allow for unobserved heterogeneity ξwi,t that is correlated with

Wt itself. However, it must not be correlated with both Wt and Zi,t. The model in (S.2.1)
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could thus be amended by the term Wtξ̃
w
i,t where E[ξ̃wi,t|Wt, Zi,t] does not depend on Zi,t but

does depend on Wt.

Assumption 3’ (Exogenous Heterogeneous Effects)

(i) E[ξwzi,t |Wt, Zi,t] = E[ξwzi,t |Zi,t]. (ii) E[ξwi,t|Wt, Zi,t] = E[ξwi,t|Zi,t]. (iii) E[ξzi,t|Wt, Zi,t] =

E[ξzi,t|Zi,t].

Finally, we assume common support as in the main text.

Assumption 4’ (Common Support)

For any t, fWZ(w, z) > 0, ∀w ∈ suppWt, z ∈ suppZi,t, where fWZ denotes the joint density.

Assumptions 2’-4’ are sufficient to prove point identification of τw(z′, z). Theorem 1’

below is the analogue of Theorem 1 in the main text.

Theorem 1’

Suppose that Assumptions 1’-4’ hold. Then, ∀w′, w ∈ suppWt, z
′, z ∈ suppZi,t,

∆τw(z′, z) =
[
E[Yi,t′ |Zi,t′ = z′,Wt′ = w′]− E[Yi,t|Zi,t = z′,Wt = w]

− (E[Yi,t′|Zi,t′ = z,Wt′ = w′]− E[Yi,t|Zi,t = z,Wt = w])
]/

(w′ − w).

Proof. Substituting for Yi,t and Yi,t′ using the model in (S.2.1) and organizing terms

results in

6



E[Yi,t′ |Zi,t′ = z′,Wt′ = w′]− E[Yi,t|Zi,t = z′,Wt = w]

− (E[Yi,t′ |Zi,t′ = z,Wt′ = w′]− E[Yi,t|Zi,t = z,Wt = w])

=(w′ − w)(z′ − z)βwz

+ w′
[ (
E[ξwi,t′|Zi,t′ = z′,Wt′ = w′] + z′E[ξwzi,t′ |Zi,t′ = z′,Wt′ = w′]

)
−
(
E[ξwi,t′|Zi,t′ = z,Wt′ = w′] + zE[ξwzi,t′ |Zi,t′ = z,Wt′ = w′]

) ]
− w

[ (
E[ξwi,t|Zi,t = z′,Wt = w] + z′E[ξwzi,t |Zi,t = z′,Wt = w]

)
−
(
E[ξwi,t|Zi,t = z,Wt = w] + zE[ξwzi,t |Zi,t = z,Wt = w]

) ]
+
[
z′
(
E[ξzi,t′|Zi,t′ = z′,Wt′ = w′]− E[ξzi,t|Zi,t = z′,Wt = w]

)
− z

(
E[ξzi,t′|Zi,t′ = z,Wt′ = w′]− E[ξzi,t|Zi,t = z,Wt = w]

) ]
+
[

(E[εi,t′|Zi,t′ = z′,Wt′ = w′]− E[εi,t|Zi,t = z′,Wt = w])

− (E[εi,t′|Zi,t′ = z,Wt′ = w′]− E[εi,t|Zi,t = z,Wt = w])
]
.

We now proceed term-by-term. Under Assumption 3’ (i) and (ii), we have

w′
[ (
E[ξwi,t′ |Zi,t′ = z′,Wt′ = w′] + z′E[ξwzi,t′ |Zi,t′ = z′,Wt′ = w′]

)
−
(
E[ξwi,t′ |Zi,t′ = z,Wt′ = w′] + zE[ξwzi,t′ |Zi,t′ = z,Wt′ = w′]

) ]
=w′

[ (
E[ξwi,t′|Zi,t′ = z′] + z′E[ξwzi,t′ |Zi,t′ = z′]

)
−
(
E[ξwi,t′|Zi,t′ = z] + zE[ξwzi,t′ |Zi,t′ = z]

) ]
(S.2.3)

and similarly

w
[ (
E[ξwi,t|Zi,t = z′,Wt = w] + z′E[ξwzi,t |Zi,t = z′,Wt = w]

)
−
(
E[ξwi,t|Zi,t = z,Wt = w] + zE[ξwzi,t |Zi,t = z,Wt = w]

) ]
=w
[ (
E[ξwi,t|Zi,t = z′] + z′E[ξwzi,t |Zi,t = z′]

)
−
(
E[ξwi,t|Zi,t = z] + zE[ξwzi,t |Zi,t = z]

) ]
.

(S.2.4)
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Under Assumption 1’ (i) and (ii), the difference between (S.2.3) and (S.2.4) simplifies to

(w′ − w)
[ (
E[ξwi,t|Zi,t = z′] + z′E[ξwzi,t |Zi,t = z′]

)
−
(
E[ξwi,t|Zi,t = z] + zE[ξwzi,t |Zi,t = z]

) ]
.

Further, we have

z′
(
E[ξzi,t′|Zi,t′ = z′,Wt′ = w′]− E[ξzi,t|Zi,t = z′,Wt = w]

)
− z

(
E[ξzi,t′ |Zi,t′ = z,Wt′ = w′]− E[ξzi,t|Zi,t = z,Wt = w]

)
[1]
=z′

(
E[ξzi,t′|Zi,t′ = z′]− E[ξzi,t|Zi,t = z′]

)
− z

(
E[ξzi,t′ |Zi,t′ = z]− E[ξzi,t|Zi,t = z]

)
[2]
=0,

where [1] follows from Assumption 3’ (iii), and [2] follows from Assumption 1’ (iii).

Finally, note that Assumption 2’ implies

(E[εi,t′|Zi,t′ = z′,Wt′ = w′]− E[εi,t|Zi,t = z′,Wt = w])

− (E[εi,t′ |Zi,t′ = z,Wt′ = w′]− E[εi,t|Zi,t = z,Wt = w]) = 0.

Combining results in

E[Yi,t′|Zi,t′ = z′,Wt′ = w′]− E[Yi,t|Zi,t = z′,Wt = w]

− (E[Yi,t′|Zi,t′ = z,Wt′ = w′]− E[Yi,t|Zi,t = z,Wt = w])

=(w′ − w)
[
(βw + E

[
ξwi,t|Zi,t = z′

]
) + z′

(
βwz + E

[
ξwzi,t
])

− (βw + E
[
ξwi,t|Zi,t = z

]
) + z

(
βwz + E

[
ξwzi,t
]) ]

.

Division by (w′ − w) then completes the proof. �

If in addition the researcher has knowledge of sign restrictions over the subgroup-specific

effects, the main effect τw is partially identified. Theorem 2’ below is the analogue of Theorem

2 in the main text.
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Theorem 2’

Suppose that Assumptions 1’-4’ hold. Take w′ ≥ w ∈ suppWt.

• If in addition τw(z) ≥ 0,∀z ∈ Z, then

τw ≥ max
z∈Z

E
[
∆τw(Zi,t, z)

]
.

• If instead, in addition τw(z) ≤ 0,∀z ∈ Z, then

τw ≤ min
z∈Z

E
[
∆τw(Zi,t, z)

]
.

Proof.

Note that

∆τw(z′, z) = τw(z′)− τw(z)

= (βw + E
[
ξwi,t|Zi,t = z′

]
) + z′

(
βwz + E

[
ξwzi,t |Zi,t = z′

])
− (βw + E

[
ξwi,t|Zi,t = z

]
) + z

(
βwz + E

[
ξwzi,t |Zi,t = z

])
.

Integrating with respect to z′ over the marginal distribution of Zi,t and using the law of

iterated expectations implies

E[∆τw(Zi,t, z)] = (βw + E
[
ξwi,t
]
) + E

[
Zi,t
(
βwz + ξwzi,t

)]
− (βw + E

[
ξwi,t|Zi,t = z

]
) + z

(
βwz + E

[
ξwzi,t |Zi,t = z

])
=τw − τw(z).

Consider now the first case in which τw(z) ≥ 0,∀z ∈ Z. Thus taking any z ∈ Z,

τw = E[∆τw(Zi,t, z)]− τw(z) ≥ E[∆τw(Zi,t, z)].

Since this inequality holds for any z ∈ Z, the first result of Theorem 2’ follows. The

arguments for the second case in τw(z)λ ≤ 0,∀z ∈ Z are analogous and omitted here for

brevity. �
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S.3. Identification without Stationarity

In this appendix we provide an alternative to Theorem 2 that does not maintain the

stationarity assumption – i.e., Assumption 1 of the main text – and where the exposure

variable Zi is time-invariant. The target parameter in this setting is

ACEt(w
′, w) + E[∆̃t′,t(w

′)],

where

ACEt(w
′, w) ≡ E[∆i,t(w

′, w, Zi)] = E[g(w′, Zi, Ui,t)− g(w,Zi, Ui,t)]

and

∆̃i,t,t′(w
′) ≡ g(w,Zi, Ui,t′)− g(w′, Zi, Ui,t).

While the ACEt describes the expected change in the outcome caused by a ceteris paribus

change in Wt at time t, ∆̃i,t′,t denotes the change in the outcome resulting from a shift in the

distribution of the unobservables (but holding the distribution of the macroeconomic variable

fixed).1 Under Assumption 1, we simply have E[∆̃i,t′,t(w)] = 0,∀w ∈ suppWt, resulting in

the identification results of the main text.

Assumptions 2-4 need to be adapted slightly to account for time-invariant exposure and

non-stationary unobservable distributions:

Assumption 5’

∀w′, w ∈ suppWt, z ∈ suppZi, E [g(w′, z, Ui,t′)|Wt′ = w′, Zi] − E [g(w, z, Ui,t)|Wt = w,Zi]

does not depend on Zi.

1Note that the ACEt(w
′, w) is nearly identical to the average causal effect defined in (2) except for the

subscript that highlights the potential time-varying nature of the ACE.
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Assumption 6’

For t̃ ∈ {t′, t} and ∀w ∈ suppWt, z
′, z ∈ suppZi, E

[
g(w, z′, Ui,t̃)− g(w, z, Ui,t̃)

∣∣Wt̃, Zi = z
]

does not depend on Wt̃.

Assumption 7’

For t̃ ∈ {t′, t}, fWt̃Zi
(w, z) > 0, ∀w ∈ suppWt̃, z ∈ suppZi, where fWt̃Zi

denotes the joint

density at time t̃.

Note that with time-invariant exposure variables, the similarity of Assumption 5’ with

conventional difference in difference assumptions where Zi takes the value of the treatment

is even more apparent than highlighted in Section 2 with time-varying exposure variables.

Finally, we can no longer obtain partial identification of an average causal effect simply

by restricting the subgroup-specific causal effects. Instead, the combination of the subgroup-

specific causal effects at time t and the subgroup-specific effects of the change in the dis-

tribution of unobservables should be restricted – i.e., we leverage sign restrictions of the

form

E[∆i,t(w
′, w, z)] + E[g(w′, z, Ui,t′)− g(w′, z, Ui,t)] ≥ 0.

When both terms are considered separately, sign-restriction for the first term can be moti-

vated analogously to the sign restrictions leveraged for Theorem 2. Sign restrictions for the

second term, however, require additional information about the change in the distribution

of unobservables between time periods t and t′.

Under the adapted assumptions and sign restrictions, we can now state an alternative

version of Theorem 2 without stationarity:
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Theorem 3’

Suppose that Assumptions 5’-7’ hold. Take w′ ≥ w ∈ suppWt.

• If in addition E[∆i,t(w
′, w, z)] +E[g(w′, z, Ui,t′)− g(w′, z, Ui,t)] ≥ 0,∀z ∈ suppZi, then

ACEt(w
′, w) + E[∆̃t′,t(w

′)] ≥ E
[
E[Yi,t′ |Wt′ = w′, Zi]− E[Yi,t|Wt = w,Zi]

]
− min

z∈suppZi

[
E[Yi,t′|Wt′ = w′, Zi = z]− E[Yi,t|Wt = w,Zi = z]

]
.

• If in addition E[∆i,t(w
′, w, z)] +E[g(w′, z, Ui,t′)− g(w′, z, Ui,t)] ≤ 0,∀z ∈ suppZi, then

ACEt(w
′, w) + E[∆̃t′,t(w

′)] ≤ E
[
E[Yi,t′ |Wt′ = w′, Zi]− E[Yi,t|Wt = w,Zi]

]
− max

z∈suppZi

[
E[Yi,t′ |Wt′ = w′, Zi = z]− E[Yi,t|Wt = w,Zi = z]

]
.

Proof.

The proof of Theorem 3’ combines and adapts the proof of Theorems 1 and 2. First,

(E[Yi,t′|Wt′ = w′, Zi = z′]− E[Yi,t|Wt = w,Zi = z′])

− (E[Yi,t′|Wt′ = w′, Zi = z]− E[Yi,t|Wt = w,Zi = z])

[1]
=(E[g(w′, z′, Ui,t′)|Wt′ = w′, Zi = z′]− E[g(w, z′, Ui,t)|Wt = w,Zi = z′])

− (E[g(w′, z, Ui,t′)|Wt′ = w′, Zi,t′ = z]− E[g(w, z, Ui,t)|Wt = w,Zi = z])

[2]
=(E[g(w′, z′, Ui,t′)|Wt′ = w′, Zi = z′]− E[g(w′, z, Ui,t′)|Wt′ = w′, Zi = z])

− (E[g(w, z′, Ui,t)|Wt = w,Zi = z′]− E[g(w, z, Ui,t)|Wt = w,Zi = z])

[3]
=(E[g(w′, z′, Ui,t′)|Wt′ = w′, Zi = z′]− E[g(w′, z, Ui,t′)|Wt′ = w′, Zi = z′])

+ (E[g(w′, z, Ui,t′)|Wt′ = w′, Zi = z′]− E[g(w′, z, Ui,t′)|Wt′ = w′, Zi = z])

− (E[g(w, z′, Ui,t)|Wt = w,Zi = z′]− E[g(w, z, Ui,t)|Wt = w,Zi = z′])

− (E[g(w, z, Ui,t)|Wt = w,Zi = z′]− E[g(w, z, Ui,t)|Wt = w,Zi = z])

[4]
=(E[g(w′, z′, Ui,t′)− g(w′, z, Ui,t′)|Wt′ = w′, Zi = z′])

− E[g(w, z′, Ui,t)− g(w, z, Ui,t)|Wt = w,Zi = z′])

[5]
=(E[g(w′, z′, Ui,t′)− g(w′, z, Ui,t′)|Zi = z′]− E[g(w, z′, Ui,t)− g(w, z, Ui,t)|Zi = z′]
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where [1] substitutes for Yi,t = g(Wt, Zi,t, Ui,t), [2] rearranges terms, [3] both adds and sub-

tracts the two terms E[g(w′, z, Ui,t′)|Wt′ = w′, Zi = z′] and E[g(w, z, Ui,t)|Wt = w,Zi = z′],

[4] follows from Assumption 5’, and [5] follows from Assumption 6’.

Second, integrating z′ over the marginal distribution of Zi and using the law of iterated

expectations implies

E
[
E[Yi,t′ |Wt′ = w′, Zi]− E[Yi,t|Wt = w,Zi]

]
− (E[Yi,t′|Wt′ = w′, Zi = z]− E[Yi,t|Wt = w,Zi = z])

=E[g(w′, Zi, Ui,t′)− g(w,Zi, Ui,t)]− E[g(w′, z, Ui,t′)− g(w, z, Ui,t)].

Third, we use E[∆i,t(w
′, w, z)] +E[g(w′, z, Ui,t′)− g(w′, z, Ui,t)] ≥ 0,∀z ∈ suppZi and the

fact that

E[g(w′, z, Ui,t′)− g(w, z, Ui,t)] = E[∆i,t(w
′, w, z)] + E[g(w′, z, Ui,t′)− g(w′, z, Ui,t)] (S.3.1)

to obtain

E[g(w′, Zi, Ui,t′)− g(w,Zi, Ui,t)] ≥ E
[
E[Yi,t′|Wt′ = w′, Zi]− E[Yi,t|Wt = w,Zi]

]
− min

z∈suppZi

[
E[Yi,t′|Wt′ = w′, Zi = z]− E[Yi,t|Wt = w,Zi = z]

]
.

Finally, note that

E[g(w′, Zi, Ui,t′)− g(w,Zi, Ui,t)] = ACEt(w
′, w) + E[∆̃t′,t(w

′)],

which concludes the proof. �
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S.4. Dataset Citations

The following provides references to the data sources compiled for the analysis in the

main text and the appendix.

Baker, Scott R, Bloom, Nicholas, and Davis, Steven J (2020). Categorical EPU Data. Re-

trieved on January, 2020, from https://www.policyuncertainty.com/categorical epu.html.

Health and Retirement Study (2018). RAND HRS CAMS Spending Data 2015 (V2) public

use dataset. Produced by the RAND Center for the Study of Aging, with funding

from the National Institute on Aging and the Social Security Administration. Santa

Monica, CA.

Health and Retirement Study (2018). RAND HRS Longitudinal File 2014 (V2) public use

dataset. Produced by the RAND Center for the Study of Aging, with funding from the

National Institute on Aging and the Social Security Administration. Santa Monica,

CA.

United States Bureau of Labor Statistics (2018). Consumer Price Index for All Urban

Consumers: All Items. Retrieved on June 20, 2018, from https://beta:bls:gov/

dataViewer/view/timeseries/CUSR0000SA0.

14

https://www.policyuncertainty.com/categorical_epu.html
https://beta:bls:gov/ dataViewer/view/timeseries/CUSR0000SA0
https://beta:bls:gov/ dataViewer/view/timeseries/CUSR0000SA0


S.5. Construction of the Analysis Sample

Starting with the initial HRS sample of 68,507 single and 72,426 couple households that

have a non-zero household sampling weight, we exclude 16,084 and 8,702 observations, re-

spectively, that have no positive holdings of financial assets.2 An additional 3,707 and 4,095

single and couple household observations, respectively, are omitted from the analysis due

to missing one or more of the variables used in estimation. Finally, households with an

observation in only one wave (3,332 and 2,439 observations for single and couple households,

respectively) are excluded to ensure that the samples will be identical across the fixed effect

and pooled models. This leaves a sample of 45,384 single and 57,190 couple household-wave

observations for the portfolio choice analysis.

Table S.2.1 shows the number of observations that were excluded from the analysis sample

due to missing information. The first two columns (“HRS”) describe the data used in the

main analysis while the third and forth columns (“CAMS”) describe the Consumption and

Activities Mail Survey data used in the supplemental analysis of consumption in Appendix

S.9. The difference in starting observations for each subsample is due to unequal distribution

of couple and single households.

The reductions in sample size are in line with existing studies that use the HRS dataset

for household analysis. In particular, Love and Smith (2010) consider the first nine waves

of the HRS (1992-2006) with a total sample size of 37,962 and 43,595 for single and couple

households, respectively. In comparison with the eleven HRS waves (1994-2014) employed

in this paper, these numbers point to a similar proportion of observations excluded. Most

recently, Gábor-Tóth and Georgarakos (2019) consider the CAMS dataset also employed in

2In doing so, we follow Rosen and Wu (2004) who also consider households conditional on holding positive

financial assets.
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this study. The authors consider a pooled single and couple households sample of 19,797 ob-

servations for their analysis, similar to the sample we use (with a total of 20,752 observations

used for analysis of consumption).

Table S.2.1
Tabulation of Deleted Observations

HRS CAMS
Single Couple Single Couple

Starting 68,507 72,426 17,847 11,811
Risky asset share - 16,084 8,702
Consumption - 4,022 2,837
Education - 7 6 0 0
Race - 12 1,393 11 298
Self-reported health - 46 34 12 6
Severe conditions - 281 199 66 31
Mobility - 2,916 2,223 55 14
ADLs - 1 5 0 0
Hospital nights - 444 235 73 34
Households recorded in only one wave - 3,332 2,439 972 475

Final # of observations = 45,384 57,190 12,636 8,116
Final # of unique households 10,022 10,555 2,983 1,765

Notes. The table provides the number of observations sequentially deleted from the sample due
to missing observations in each variable. Additionally, households that are recorded in only one
wave or have no total spending are excluded from the analysis. The two bottom rows show the
number of final observations and the associated number of unique households, respectively.

Table S.5.2 presents complementary summary statistics. Nominal financial values are con-

verted to 2010 US dollars using the Consumer Price Index corresponding to the 12 months

preceding the respective interview’s end-date. Single households are disproportionately fe-

male (more than 71%) and despite being nearly five years older on average, are healthier

both in terms of self-reported health and most other indicators (all except ADLs). Couple

households tend to have a greater share of risky assets (and a lower share of safe assets),

consistent with theories of risk-sharing and diversification.
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Table S.5.2
Summary Statistics

Single households Mean Sd. Mean Sd. Share

Asset Shares Hh Characteristics Hh Proportions (%)

Risky assets 0.136 0.278 Self-reported
health

2.839 1.101 Female 0.713

Safe assets 0.679 0.399 Severe
conditions

0.717 0.905 Retired 0.575

IRA 0.171 0.308 Mobility 1.750 1.822 No high school 0.176
Bonds 0.015 0.085 ADLs 0.465 1.169 GED 0.038
Macro. Variables Hospital nights 2.344 9.130 High school 0.329
HCPU 127.421 102.519 Income ($100,000) 0.437 1.101 Some college 0.247
HCPU12 131.353 75.675 Wealth ($100,000) 2.974 11.692 Above college 0.209

Years ret. 8.288 10.885 White 0.863
Age 69.113 11.296 Black 0.100

Other 0.037

Couple households Mean Sd. Mean Sd. Share

Asset Shares Hh Characteristics Hh Proportions (%)

Risky assets 0.167 0.284 Self-reported
health

3.058 1.017 Retired 0.579

Safe assets 0.517 0.409 Severe
conditions

0.895 0.908 No high school 0.047

IRA 0.299 0.360 Mobility 1.883 1.747 GED 0.023
Bonds 0.016 0.080 ADLs 0.469 1.199 High school 0.243
Macro. Variables Hospital nights 2.892 10.929 Some college 0.273
HCPU 128.632 102.413 Income ($100,000) 1.056 2.378 Above college 0.414
HCPU12 133.243 74.815 Wealth ($100,000) 5.408 13.573 White-White 0.886

Years ret. 6.887 9.188 Black-Black 0.048
Age 64.943 9.280 Other-Other 0.020

White-Black 0.005
White-Other 0.039
Black-Other 0.003

Notes. Statistics for single households are based on the sample of 45,384 household-wave observations. For couple households,
there are 57,190 observations used in the analysis. The HRS-provided household analysis weights are used for calculation. Fol-
lowing Rosen and Wu (2004), safe assets are checking and savings accounts, CDs, government savings bonds and T-bills, and
risky assets are stocks and mutual funds. HCPU12 denotes the 12-month average of Baker et al.’s (2016) health care policy
uncertainty. Health measures, age, years of retirement, retirement status, and highest obtained education are defined as the
maximum across spouses. $ denotes 2010 Dollars.
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S.6. Implementation Details

This appendix provides pseudocode for the estimation procedures of the relative distri-

butions of the DCE (e.g., Figure 2) and the bounds on the ACE (see Table 1).

Algorithm 1 provides the pseudocode that serves as a first-step basis for plotting the

relative distribution of the DCE. Once the local linear regression coefficients – denoted here

as γ̂
(b,s)
k , where b denotes the bootstrap iteration, s corresponds to a particular value on the

horizontal axis, and k denotes one of the health categories – are calculated, this relative

distribution may readily be calculated. For a particular k ∈ {1, . . . , dimZ} and a selected

baseline s? ∈ {1, . . . , S}, we can calculate γ̂
(b,s)
k − γ̂(b,s?)

k for each b ∈ {1, . . . , B}. For each

s, this allows for straightforward calculation of bootstrap statistics such as the mean or the

99% confidence bands using Algorithm 2 in Montiel Olea and Plagborg-Møller (2019).

Algorithm 1 BootstrapLLR

1: Required input: B number of bootstraps; {(yi,t,HCPUt, Zi,t, Xi,t)}i∈D,t∈T the
data, where D is the set of households and T is the set of time periods;
{z(s)

k }s∈{1,...,S},k∈{1,...,dimZ} a set of values for the Z-variables for which to calculate the
local linear regression coefficients;

2: procedure BootstrapLLR

3: for b ∈ {1, . . . , B} do
4: Db ← Sample(D) . Block-bootstrap households

5: {Z̃(b)
i,t }i∈Db,t∈T ← Residualize({Zi,t, Xi,t}i∈Db,t∈T ) . Residualize Z-variables

6: for k ∈ {1, . . . , dimZ} do
7: for s ∈ {1, . . . , S} do
8:

γ̂
(b,s)
k ← arg min

γ
min
α,β

∑
i∈Db,t∈T

K
(
Z̃

(b)
it,k, z

(s)
k

)(
yi,t − α− z̃(b)

it,kβ − log HCPUtγ
)2

(S.6.1)

9: Return: {γ̂(b,s)
k }b∈{1,...,B},s∈{1,...,S},k∈{1,...,dimZ}

Notes. dimZ denotes the dimension of the vector of Z-variables, Sample denotes the function that samples

households from the empirical distribution of households with replacement. Residualize denotes the VAR-

based residualization procedure outlined in Section 3. K(·, ·) denotes the Gaussian kernel function. The

kernel bandwidths are chosen using the Silverman (1989) rule.
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The heatmap figures for visualizing the relative distribution of the differences in condi-

tional average causal effects (e.g., Figure S.7.2) can be generated in similar fashion. This is

done by replacing the local linear regression specification in equation (S.6.1) below with a

generalized random forest of Athey et al. (2019). Note that instead of providing a sequence

of values for each health category as in Algorithm 1, computation of the heatmaps with

the generalized random forests requires providing a grid of values for each pair of health

categories under consideration.

Algorithm 2 provides the pseudocode for estimation of the bounds on the ACE presented

in Table 1. From the estimated ACE in each bootstrap iteration, we can calculate bootstrap

statistics such as the mean or the 95th percentile of bootstrap draws.

Algorithm 2 BootstrapACE

1: Required input: B number of bootstraps; {(yi,t,HCPUt, Zi,t, Xi,t)}i∈D,t∈T the data,
where D is the set of households and T is the set of time periods; z? a set of values for the
Z-variables that serve as a baseline case for which E[∆i,t(w

′, w, z?)] ≥ E[∆i,t(w
′, w, z)]

or E[∆i,t(w
′, w, z?)] ≤ E[∆i,t(w

′, w, z)], ∀z ∈ suppZi,t is assumed;

2: procedure BootstrapACE

3: for b ∈ {1, . . . , B} do
4: Db ← Sample(D) . Block-bootstrap households

5: {Z̃(b)
i,t }i∈Db,t∈T ← Residualize({Zi,t, Xi,t}i∈Db,t∈T ) . Residualize Z-variables

6: ĝ(b) ← CausalForest({(yi,t, log HCPUt, Z̃
(b)
i,t )}i∈Db,t∈T )

7: {γ̂(b)
i,t }i∈Db,t∈T ← ĝ(b)(Z̃

(b)
i,t )

8: γ̂(b,?) ← ĝ(b)(Z?)

9: ÂCE
(b)
← 1

NT

∑
i

∑
t γ̂

(b)
i,t − γ̂(b,?)

10: Return: {γ̂(b,s)
k }b∈{1,...,B},s∈{1,...,S},k∈{1,...,dimZ}

Notes. Sample denotes the function that samples households from the empirical distribution of households

with replacement. Residualize denotes the VAR-based residualization procedure outlined in Section 3.

CausalForest corresponds to the implementation provided by Tibshirani et al. (2020).
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S.7. Additional Estimation Results

This appendix contains estimation results corresponding to the three other health cat-

egories considered in the paper: self-reported health, mobility, and ADLs. For all figures

in this appendix, the estimates are relative to the baseline of households that are in sub-

stantially better health than expected, defined here as having a more favorable unexpected

change in the corresponding health category than 95% of households in the sample. The

plots are based on B = 1, 000 bootstrap draws.

Figure S.7.1 shows the line plots that describe the relative distribution of subgroup-

specific average causal effects using single health category. As with Figure 2 in the main

text, these plots show the local linear regression-based estimates of the DCE of health care

policy uncertainty on safe and risky asset share, respectively, conditional on a single health

category. The solid lines correspond to the mean and the dashed lines correspond to the

bootstrapped 99% uniform confidence bands, respectively. The figure shows the relative

distribution conditional on ADLs (Figures (A) and (B)), mobility (Figures (C) and (D)),

and self-reported health (Figures (E) and (F)).

Figures S.7.2 to S.7.9 show heatmaps describing the relative distribution of subgroup-

specific average causal effects using two health categories. The center panels correspond

to the mean, while the left and the right-most panels provide the bootstrapped lower and

upper 99% uniform confidence bands, respectively. As before, the results are normalized

such that all estimates are relative to the conditional average causal effect of households that

are substantially healthier than expected, which we now define as having a more favorable

unexpected change in each of the two health categories than 95% of the households in the

sample.3 Each page of figures presents estimates for couple households in the upper panel

(Panel 1) and single households in the lower panel (Panel 2).

3This point corresponds to the bottom-left cell in each of the heatmaps.
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Figures S.7.2 and S.7.3 show the random forest-based estimates of the DCE of health

care policy uncertainty on safe and risky asset share, respectively, conditional on severe

conditions and nights spent in the hospital. Figures S.7.4 and S.7.5 show the analogous

plots conditional on severe conditions and ADLs, S.7.4 and S.7.5 show the plots conditional

on severe conditions and mobility, and Figures S.7.8 and S.7.9 show the final pair of plots

conditional on severe conditions and self-reported health.
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Figure S.7.1
Normalized DCE Estimates for Couple and Single Households (Additional Results)
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Figure S.7.2
Normalized DCE on Safe Asset Share using Severe Conditions and Nights in Hospital

Panel 1: Couple Households
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Figure S.7.3
Normalized DCE on Risky Asset Share using Severe Conditions and Nights in Hospital

Panel 1: Couple Households

−5

0

5

10

−0.2 0.0 0.2
Severe conditions

N
ig

ht
s 

in
 h

os
pi

ta
l

(a) Lower confidence band

−5

0

5

10

−0.2 0.0 0.2
Severe conditions

N
ig

ht
s 

in
 h

os
pi

ta
l

(b) Mean

−5

0

5

10

−0.2 0.0 0.2
Severe conditions

N
ig

ht
s 

in
 h

os
pi

ta
l

(c) Upper confidence band

DACE

−0.2

−0.1

0.0

0.1

0.2

Panel 2: Single Households

−5

0

5

10

−0.2 0.0 0.2
Severe conditions

N
ig

ht
s 

in
 h

os
pi

ta
l

(d) Lower confidence band

−5

0

5

10

−0.2 0.0 0.2
Severe conditions

N
ig

ht
s 

in
 h

os
pi

ta
l

(e) Mean

−5

0

5

10

−0.2 0.0 0.2
Severe conditions

N
ig

ht
s 

in
 h

os
pi

ta
l

(f) Upper confidence band

24



Figure S.7.4
Normalized DCE on Safe Asset Share using Severe Conditions and Activities of Daily Living

Panel 1: Couple Households
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Figure S.7.5
Normalized DCE on Risky Asset Share using Severe Conditions and Activities of Daily Living

Panel 1: Couple Households
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Figure S.7.6
Normalized DCE on Safe Asset Share using Severe Conditions and Constraints to Mobility

Panel 1: Couple Households
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Figure S.7.7
Normalized DCE on Risky Asset Share using Severe Conditions and Constraints to Mobility

Panel 1: Couple Households
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Figure S.7.8
Normalized DCE on Safe Asset Share using Severe Conditions and Self-Reported Health

Panel 1: Couple Households
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Figure S.7.9
Normalized DCE on Risky Asset Share using Severe Conditions and Self-Reported Health

Panel 1: Couple Households
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S.8. Multiplicative-Interaction Estimation Results

This appendix evaluates the multiplicative-interaction estimation framework that arises

under a linearity assumption on the structural function g, i.e.,

g(Wt, Zi,t, Ui,t) = βwWt + βzZi,t + βwzWtZi,t + Ui,t,

where (βw, βz, βwz) are unknown and fixed coefficients. This multiplicative interaction frame-

work imposes strong functional assumptions that can severely limit the extent to which

heterogeneous effects of the macroeconomic variable can be captured. We illustrate the

substantial limitations of this approach in the context of health care policy uncertainty,

highlighting the benefits of the semiparametric alternative we consider in Section 4.

The following figures show the estimated DCE of health care policy uncertainty on safe

and risky asset share, respectively, using the multiplicative interaction specification above for

all five health categories considered in the paper. As before, the figures are normalized such

that all estimates are relative to the subgroup-specific average causal effect of households

that are substantially healthier than expected, which we define as having a more favorable

unexpected change in the respective health category than 95% of households in the sample.

Figure S.8.1 presents estimates of the DCE based on unexpected changes to severe con-

ditions (top panels) and on unexpected changes to nights spent in hospital (bottom panels)

based on the multiplicative-interaction specification. The figure is thus analogous to Figure

2 with the only difference being the functional form assumption. Figure S.8.2 presents anal-

ogous estimates for the other three health categories, ADLs (top panels), mobility (center

panels), and self-reported health (bottom panels).

In stark contrast to the semiparametric estimates, the restricted estimates of the DCE

do not indicate substantial heterogeneity across different values in unexpected changes to

health. Note further that because the bounds on the ACE are based on integrating the
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relative distribution of these effect-differences, the bound derived from these estimates would

be close to zero and hence does not carry substantial information.

In the context of our paper, the functional form assumption imposed by a multiplicative

interaction specification thus severely limits the possibility for deriving informative bounds

on the average causal effect of health care policy uncertainty.

Figure S.8.1
Normalized Linear DCE Estimates for Couple and Single Households
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Figure S.8.2
Normalized Linear DCE Estimates for Couple and Single Households (Contd.)
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S.9. Results on Consumption

This appendix provides supplemental results on the effect of health care policy uncertainty

on households’ consumption expenditures.

To measure spending we use variation in households’ consumption expenditures in line

with Gruber and Yelowitz (1999). Data for this purpose are taken from the CAMS, which

documents a variety of spending variables that are not included in the core HRS. In par-

ticular, we focus on households’ total spending during the previous year. We consider both

durable and total consumption expenditures, normalized to 2010 dollars.

As with the main analysis sample, we remove those households that are missing one

or more of the variables used in estimation, or only occur in a single wave, leaving an

analysis sample of 12,636 single and 8,116 couple household-wave observations. Appendix

S.5 provides detailed documentation of the cleaning steps and the associated reduction in

sample at each stage.

We apply the same methodological approach to identify a bound on the average causal

effect of health care policy uncertainty on household consumption expenditures as we did

when investigating relative demand in risky assets. Notice, however, that the arguments

derived from the background risk literature to motivate a bound on the conditional average

causal effects on relative risky asset demand do not immediately transfer to consumption

expenditures. Instead, for this application we draw from the extensive literature on precau-

tionary savings (e.g., Zeldes, 1989; Kimball, 1990). Under the assumption of (sufficiently

strong) risk aversion, theoretical insights from the precautionary savings literature imply an

upper bound of zero on the conditional average causal effect of health care policy uncertainty

on consumption expenditures – that is, given an increase in health care policy uncertainty,

households, on average, do not increase their consumption.4

4Note that the assumptions for a precautionary savings mechanism are stronger than for a background

34



Table S.9.1 provides the bounds on the average causal effect of health care policy uncer-

tainty on consumption expenditures. The effects signs are largely in line with expectations,

and hint at a moderate decrease in consumption expenditures when faced with an increase

in health care policy uncertainty. However, none of the estimated bounds differ from zero

at a 5% significance level. Due to the substantially smaller sample size and measurement

complications of the dependent variables, we caution against interpreting these findings as

definitive evidence against a precautionary savings effect of health care policy uncertainty.

Table S.9.1
Bounds on the Average Causal Effect on Consumption Ex-
penditures

Durable Consumption Total Consumption

Couples Singles Couples Singles
(1) (2) (3) (4)

-33.4 -18.5 -2493.1 562.6
(−∞, 38.2] (−∞, 18.2] (−∞, 425.8] (−∞, 2303.1]

Notes. The table presents estimates of the bound on the average causal
effect of health care policy uncertainty on consumption expenditure.
Brackets contain one-sided confidence intervals covering 95% of boot-
strapped bounds

risk mechanism. In particular, additional conditions are needed for the third derivatives of the utility function

(rather than just the second). See Zeldes (1989) and Kimball (1990).
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S.10. Robustness Results for Individuals below Age 65

Because most individuals above age 65 in the United States have Medicare, one might

suspect that for these individuals, health care policy uncertainty would have less of an effect

on their portfolio decisions than for those below age 65.5 For robustness, in this section the

semiparametric estimation results are repeated, this time restricting the estimation to a sub-

sample of households where no household member is 65 years old or older; these are shown

in Figure S.10.1 for the two health categories presented in the paper in Figure 2 (severe

conditions and nights in hospital) and Figure S.10.2 for the other three health categories

(ADLs, mobility, and self-reported health, analogous to Figure S.7.1).6 The result of this

restriction is a fairly large reduction in sample. For couple households, this sample restriction

leaves 25,584 of the initial 57,190 observations. For single households, this sample restriction

leaves 15,157 of the initial 45,384 observations. A noticeable increase in the bias and variance

of the estimates is therefore expected. Nonetheless, the results are largely similar to those

using the full sample. In particular, the point estimates still suggest a decreased (increased)

relative demand in risky (safe) assets with worsening unexpected changes in health. The

local linear regression-based instruments are not significant for most health categories.

5Including individuals over 65 in the sample, as we do in the main paper, should, therefore, attenuate

any measured effects.

6As before, these plots show the local linear regression-based estimates of differences in average causal

effects of health care policy uncertainty on safe and risky asset share, respectively, conditional on a single

health category, and the solid lines correspond to the mean and the dashed lines correspond to the boot-

strapped 99% uniform confidence bands. The estimates are relative to the baseline of households that are

in substantially better health than expected, defined here as having a more favorable unexpected change in

the corresponding health category than 95% of households in the sample. The plots are based on B = 1, 000

bootstrap draws.
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Figure S.10.1
Normalized DCE Estimates for Couple and Single Households (pre 65)

−0.1

0.0

0.1

−0.2 0.0 0.2
Severe conditions

D
A

C
E

Household Type
Couple
Single

(a) Safe asset share

−0.1

0.0

0.1

−0.2 0.0 0.2
Severe conditions

D
A

C
E

(b) Risky asset share

−0.10

−0.05

0.00

0.05

0.10

0.15

−5 0 5 10
Nights in hospital

D
A

C
E

(c) Safe asset share

−0.15

−0.10

−0.05

0.00

0.05

0.10

−5 0 5 10
Nights in hospital

D
A

C
E

(d) Risky asset share

37



Figure S.10.2
Normalized DCE Estimates for Couple and Single Households (pre 65; contd.)
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