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Abstract

Firms personalize prices, advertising, product design, and more to find and serve
their—often highly heterogeneous—consumers. When personalizing to known con-
sumers, these marketing decisions can be informed by past choice behavior. How-
ever, personalization must rely on observed characteristics for new consumers with
limited or no purchase histories. I propose Bayesian hierarchical additive regression
trees (HART) to define optimal marketing decisions that adapt to the firm’s fa-
miliarity with the consumer. HART combines the strengths of supervised machine
learning and hierarchical Bayesian models in one framework: First, it flexibly lever-
ages potentially many observed characteristics to personalize to new consumers.
Second, it optimally adapts to the consumer’s specific preferences as their choices
are recorded over time. I develop an efficient Metropolis-within-Gibbs sampler for
fully Bayesian inference and apply it in two discrete choice applications. Using data
from a canonical conjoint study, I illustrate how HART discovers marketing oppor-
tunities for product design in new markets. In a CPG scanner data application,
HART leverages observed characteristics to improve out-of-sample choice prediction
by 60% for new consumers, and raises profits by 13% and 2% compared to conven-
tional personalization approaches for new and known consumers, respectively.
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1 Introduction

Consumers are highly heterogeneous both in their observed characteristics and their un-
observed preferences. Understanding and catering to these differences has been a core
marketing challenge for several decades (e.g., Murthi and Sarkar, 2003; Rafieian and Yo-
ganarasimhan, 2023). Canonical examples include targeted product design (Allenby and
Ginter, 1995), couponing (Rossi et al., 1996), and e-mail marketing (Ansari and Mela,
2003). Recent personalization examples include churn outreach (Ascarza, 2018), digital
advertising (Rafieian and Yoganarasimhan, 2021; Danaher, 2023), promotions (Simester
et al., 2020a; Simester et al., 2020b), pricing (Morozov et al., 2021; Dubé and Misra, 2023;
Liu, 2023; Smith et al., 2023; Jain et al., 2024), product recommendations (Korganbekova
and Zuber, 2023), free trials (Yoganarasimhan et al., 2023), and catalog mailing (Hitsch
et al., 2024). In each of these applications, personalization is found to be a valuable device
in a firm’s success, motivating the large interest in methods for estimating and leveraging
consumer heterogeneity.

However, firms seeking to personalize marketing decisions must not only understand
heterogeneity among consumers’ preferences, they must also make personalization deci-
sions with widely varying extents of knowledge about different consumers. For example,
Rossi et al. (1996) and Smith et al. (2023) emphasize the value of purchase history for
optimal couponing for known consumers. Yet, for new consumers with no or limited
historical demand data, firms have no choice but to exploit other data sources for per-
sonalization as in Padilla and Ascarza (2021) and Dubé and Misra (2023). While a firm
would ideally leverage all available information for every consumer regardless of their re-
lationship’s length, existing methods flexibly leverage either choice behavior or observed
characteristics. This complicates personalization efforts in applications with known and
new consumers, and is further exacerbated when a consumer’s choices accumulate without
guidance on the transition between methods.

I address this challenge by proposing a hierarchical Bayesian machine learning ap-
proach that flexibly leverages potentially many observed characteristics, adapts to pur-
chase histories of varying lengths, and defines optimal personalization decisions regard-
less of the firm’s familiarity with the consumer. The proposed approach combines the
strengths of recent supervised machine learning methods and long-established hierarchi-
cal Bayesian models: First, like supervised machine learning methods, new consumers’
preferences are predicted with a granular “representative consumer” defined as a flexible
function of potentially many observed characteristics. Second, like existing hierarchi-
cal Bayesian models, consumer-specific preferences adaptively deviate from those of the
representative unit as their choices accumulate. The hierarchical framework also quanti-
fies uncertainty in the firm’s knowledge about each consumer’s preferences, allowing for
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(Bayes) optimal personalization decisions at any point in a consumer’s journey. To the
best of my knowledge, this is the first Bayesian approach to personalization that flexibly
leverages potentially many observed characteristics and purchase histories, addressing an
open question highlighted by both Allenby and Rossi (2019) and Dew et al. (2024).1

Formally, I propose a new hierarchical nonparametric prior for preference parame-
ters applicable to any generic consumer-level demand model. Motivated by the empirical
success of Bayesian Additive Regression Trees (BART) of Chipman et al. (2010) for non-
parametric regression and heterogeneous treatment effect estimation (e.g., Hahn et al.,
2020; Hill et al., 2020), I model the representative consumer as a (stacked and scaled) sum
of many regression trees. For ease of discussion, this novel extension of BART to hier-
archical models is dubbed HART (hierarchical additive regression trees). HART flexibly
leverages potentially many observed consumer characteristics and thus generalizes exist-
ing hierarchical models that exclusively model the representative consumer as a linear
function of a select few characteristics (e.g., Allenby and Ginter, 1995; Rossi et al., 1996;
Smith et al., 2023). I further propose Dirichlet HART for settings with sparse dependence
on consumer characteristics. Dirichlet HART builds on the prior specification of Linero
(2018), inducing exact sparsity and accommodating fully Bayesian variable selection.

A key challenge in high-dimensional Bayesian models such as HART is the computa-
tional complexity of sampling from the posterior distribution. This is further complicated
by the discreteness of the sum-of-trees representative consumer model which prohibits the
application of off-the-shelf samplers such as Hamiltonian Monte Carlo that are based on
gradient approximations of the posterior.2 I resolve these challenges with the development
of an efficient Metropolis-within-Gibbs sampler for fully Bayesian inference over consumer-
specific preferences, the representative consumer, and the distribution of preferences in
the population. This is achieved by combining generic Gibbs samplers for hierarchical
models as in Rossi et al. (2009) with adapted steps of the “Bayesian backfitting” algo-
rithm of Chipman et al. (2010). The samples of the proposed Metropolis-within-Gibbs
algorithm converge to the exact posterior distribution, thus facilitating optimal person-
alization decisions that fully account for estimation uncertainty (e.g., Green, 1963; Rossi
et al., 1996; Allenby and Rossi, 2019).3

I illustrate the HART model with two discrete choice applications. In the canoni-
cal conjoint study of Allenby and Ginter (1995) on out-of-state credit card design, HART

1Padilla and Ascarza (2021) and Yin et al. (2024) also discuss limitations of existing hierarchical
Bayesian models for flexible use of observed characteristics needed for personalization for new consumers.

2Hamiltonian Monte Carlo samplers are widely used in probabilistic machine learning applications in
marketing, see, e.g., Dew et al. (2024).

3An implementation of the Metropolis-within-Gibbs sampler for the HART model is provided in the
R package bayesm.HART. The package builds on the popular bayesm package of Rossi (2023), combining
familiar high-level R syntax with an efficient C++ implementation of the MCMC algorithm.
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estimates rich observed and unobserved heterogeneity in preferences. Unlike linear hierar-
chical models, HART discovers nonlinear associations between respondents’ demographics
and their preferences. This has important implications for counterfactual analysis. For
example, while linear hierarchical models predict little advantage in targeting different
consumer segments, HART clearly differentiates between segments that are likely to re-
spond to different credit card designs. I further highlight the robustness of Dirichlet
HART to high-dimensional observed characteristics with a placebo exercise that appends
the data with 100 simulated noise variables. In contrast to results based on the linear ap-
proach, counterfactuals based on Dirichlet HART are unaffected as its posterior variable
selection approach accurately discards the irrelevant characteristics.

Applying the HART model to CPG scanner data on mayonnaise purchases also gener-
ates new insights about the association between consumer characteristics and their prefer-
ences, and highlights HART’s marketing value for personalized coupons. HART improves
out-of-sample choice prediction for new consumers by 60% with standard low-dimensional
demographics compared to linear hierarchical models. When additional characteristics
are included, the linear hierarchical model’s prediction error increases while HART’s pre-
diction error decreases to an overall improvement of 113%. These improvements stem
from both more flexible use of conventional demographics and the ability to leverage
more characteristics. For example, Bayesian posterior variable importance measures of
the Dirichlet HART model indicate that preference predictions for new consumers load
on several characteristics not typically considered in marketing applications, including
owning a dishwasher. Finally, I assess the marketing value of the proposed models in
a counterfactual personalized couponing exercise similar to Smith et al. (2023). Using
a double/debiased machine learning estimator to estimate out-of-sample expected coun-
terfactual profits, I show that personalization with HART would substantially improve
profits of the focal manufacturer Hellmann’s. Compared to existing pricing, personaliza-
tion with HART results in 40% higher profits for new consumers and 26% higher profits
for known consumers. Scaling by the approximate market size of the midwest-US market,
this is associated with $1.35 million higher annual profits. Further, personalization with
HART improves upon personalization with conventional alternative approaches by 13%
and 2% for new and known consumers, respectively. Importantly, the results indicate
the importance of flexible use of observed characteristics and adjusting to accumulating
purchase history, as achieved by the proposed HART models.

Related Literature. This paper draws from and contributes to several strands of liter-
ature in marketing and statistics.

First, the paper contributes to the vast literature on personalization in marketing (e.g.,
Rossi et al., 1996; Ansari and Mela, 2003; Ascarza, 2018; Dubé and Misra, 2023; Rafieian
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and Yoganarasimhan, 2023; Smith et al., 2023; Hitsch et al., 2024). Existing research has
largely focused on personalization for either known or new consumers. This paper jointly
analyzes personalization for consumers with varying purchase history lengths in a coherent
framework with both flexible observed and unobserved heterogeneity. I highlight that
flexible use of extended consumer characteristics is valuable for targeting, substantially
increasing profits in the couponing application. The results further suggest that capturing
potential correlations in unobserved heterogeneity is important for effective targeting.
Finally, I confirm that observed characteristics available in conventional scanner data
panels are complementary to—not a replacement of—historical choice data. For known
consumers, leveraging their purchase history is key for successful personalization even
when observed characteristics are flexibly incorporated.

Second, HART provides a new approach to the cold start problem, wherein managers
are tasked with decision making in environments with little or no historical demand data.
The core challenge in this setting is effective extrapolation from existing information to
new settings.4 Recent contributions leverage initial customer behavior to infer shared
latent heterogeneity (e.g., Padilla and Ascarza, 2021; Padilla et al., 2024). For example,
Padilla and Ascarza (2021) augment a consumer’s initial purchase outcome with several
outcomes on their initial acquisition. When purchasing and acquisition patterns are re-
lated, this provides additional identifying information about a consumer’s latent consumer
type (see also Ainslie and Rossi (1998)). The proposed HART model instead flexibly lever-
ages potentially many observed consumer characteristics to inform initial personalization.
While this supervised learning approach has the benefit of avoiding distributional as-
sumptions imposed on augmented outcomes as in Padilla and Ascarza (2021), HART and
outcome-augmentation approaches are complementary. Their combination is a potentially
useful avenue for future research.

The idea to use observed characteristics to inform initial predictions in the absence
of historical demand data dates back to at least discussions in Lenk and Rao (1990).
Allenby and Ginter (1995) leverage consumer characteristics in a hierarchical Bayesian
logit model for predicting choices of new conjoint respondents. Yet, subsequent literature
has concluded little gain from using demographics (e.g., Rossi et al., 1996; Smith et al.,
2023). Results in this paper suggest that this is at least partially due to the inability of
existing hierarchical approaches to accommodate rich characteristics in a flexible manner.

The approach of HART to flexibly leverage observed heterogeneity for initial person-
alization is closely related to recent contributions of Ascarza (2018), Dubé and Misra

4The cold start problem is not unique to customer personalization. Managers must also readily make
decisions, for example, concerning new products and markets as in Lenk and Rao (1990), Neelamegham
and Chintagunta (1999), Neelamegham and Chintagunta (2004). The advantages of HART readily extend
to these settings.
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(2023), Yoganarasimhan et al. (2023), Hitsch et al. (2024), Yin et al. (2024), and Far-
rell et al. (2025) on using machine learning to estimate observed heterogeneity.5 These
machine learning approaches offer flexible personalization solutions in modern settings
with potentially many observed characteristics (Chintagunta et al., 2016; Bradlow et al.,
2017), or where linear functional forms are ill-suited (e.g., using embeddings as in Yin
et al. (2024)). The key difference in this paper is that HART embeds the machine learn-
ing method within a hierarchical Bayesian framework. This has three key advantages: 1)
HART estimates the distribution of unobserved heterogeneity, including taste correlations
that are often important for marketing counterfactuals (e.g., Allenby and Ginter, 1995).
2) HART’s individual-level estimates adapt to a consumer’s purchase history, where the
learning rate is data-driven and depends on the distribution of unobserved heterogeneity
(e.g., Allenby and Rossi, 2019). 3) HART accommodates fully Bayesian inference both on
individual-level parameters and flexible preference predictions. Importantly, this provides
direct managerial guidance on how to optimally transition from recommendations for a
brand new consumer to recommendations for a consumer with accumulating purchase
history.

Third, I contribute to the rapidly growing literature on applications of probabilistic
machine learning in marketing (Dew et al., 2024). Recent examples include Gaussian
process priors (e.g., Dew and Ansari, 2018; Korganbekova and Zuber, 2023; Dew, 2025),
deep exponential family components (Padilla and Ascarza, 2021), and Bayesian neural
networks (Daviet, 2020). BART developed by Chipman et al. (2010) is widely popular
for nonparametric regression applications and heterogeneous treatment effect estimation
(e.g., Hill, 2011; Hahn et al., 2020; Hill et al., 2020), including for personalized medical
recommendations (Logan et al., 2019). Linero and Yang (2018), Ročková and Van Der Pas
(2020), and Jeong and Ročková (2023) characterize conditions for near-optimal posterior
concentration rates of variants of BART about complex smooth or discontinuous functions.
To the best of my knowledge, this is the first paper to highlight the value of BART in
marketing models.

Finally, I contribute to the statistical literature on methodological extensions of BART
(Chakraborty, 2016; Linero, 2018; Murray, 2021; Um et al., 2023; Esser et al., 2025; Desh-
pande et al., 2024). Closely related are Murray (2021) who develops a BART prior for
nonparametric logistic and count regression models, and Deshpande et al. (2024) who
develop a BART prior for linear varying coefficient models. I complement these recent
developments with a hierarchical BART prior on individual-level parameters of generic
unit-level likelihoods. The proposed hierarchical prior applies in generic panel applica-
tions, including choice and count regression models, frequently considered in marketing

5See also Rafieian and Yoganarasimhan (2023) for a recent review.
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applications.
The key technical contribution of this paper is the development of a practical Gibbs

sampler for posterior inference about the HART parameters. Due to its discrete nature,
off-the-shelf gradient-based samplers typically employed for, e.g., Gaussian process models
are not applicable to HART. I discuss a general data augmentation and variable trans-
formation strategy that greatly simplifies HART sampling and allows for application of
the Bayesian backfitting algorithm of Chipman et al. (1998) and Chipman et al. (2010).
Importantly, the proposed sampler is modular and can straightforwardly be combined
with existing Gibbs samplers for hierarchical models as in Rossi et al. (2009). Further,
the strategies employed for application of Bayesian backfitting are readily amenable to
alternative algorithms for supervised Bayesian machine learning methods such as the
Bayesian lasso (Park and Casella, 2008), paving a path for future research on alternative
hierarchical priors for flexible use of potentially many observed characteristics.

Outline. The rest of the paper proceeds as follows. Section 2 introduces HART for
a generic unit-level likelihood model. Section 3 develops the corresponding Metropolis-
within-Gibbs sampler. Section 4 then discusses the HART logit model as the leading
example. Sections 5 and 6 illustrate the HART logit model in two applications. Section
5 revisits the canonical conjoint study of Allenby and Ginter (1995). Section 6 applies
the HART logit model for personalized couponing in a CPG scanner dataset. Section 7
concludes with a discussion.

2 Hierarchical Additive Regression Trees

Hierarchical Bayesian models in marketing conventionally consist of three levels: A unit-
level likelihood that models the unit’s historical demand data conditional on their consumer-
specific parameters, a first-stage prior that associates the consumer-specific parame-
ters with their observed characteristics, and a second-stage prior that restricts these
population-level associations (e.g., Rossi and Allenby, 2003). This section introduces
hierarchical additive regression trees (HART) as a flexible prior specification that can be
used jointly with any unit-level likelihood model. After briefly introducing the generic
setting in Section 2.1, Sections 2.2 and 2.3 define the first and second-stage priors, re-
spectively. Subsection 2.4 states the joint posterior distribution with a generic unit-level
likelihood.

2.1 Generic setup

I consider a generic hierarchical setting as described in, for example, Allenby and Rossi
(2019). A manager observes {i ∈ [n]} units, each associated with historical demand data
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Di.6 The extent of the available demand data can vary substantially across units and for
new units there may be an absence of any observed history. Common examples of units i
in marketing applications are consumers or products, with Di representing a consumer’s
purchases or a product’s sales across time.

The manager models each unit’s demand using a likelihood L(Di|θi) where θi is a
D-dimensional vector of unit-specific parameters. Continuing previous examples, θi may
represent a consumer’s preference parameters (Allenby and Ginter, 1995), a consumer’s
search propensities (Morozov, 2023), a consumer’s receptiveness to advertising (Zant-
edeschi et al., 2017), or a product’s expected demand (Neelamegham and Chintagunta,
1999).

In addition, the manager observes a potentially high-dimensional vector of time-
invariant characteristics Zi for each unit i, including for new units.7

For units with historical demand data, the unit-level likelihood identifies the param-
eters θi. For new units with no or little available demand data, inferences about θi must
carefully exploit other sources of information. A Bayesian approach leverages a first-stage
prior.

2.2 First-stage prior

A first-stage prior for θi shrinks unit-level parameters towards a representative unit. Com-
monly used priors in the marketing literature consist of two components: 1) the definition
of the representative unit that determines where the unit-level parameters are shrunk
to, and 2) a distribution of unobserved heterogeneity that determines how the unit-level
parameters are shrunken.

There is a large literature on the choice of distributions, including normals, mixtures
of normals, and Dirichlet process mixtures (e.g., McCulloch and Rossi, 1994; Allenby
and Lenk, 1994; Allenby et al., 1998; Ansari and Mela, 2003).8 These allow researchers
to specify, for example, whether shrinkage of preferences towards the representative unit
should be symmetric. Allowing for non-symmetric shrinkage can be important in settings
where preferences exhibit multi-modality or high skewness (e.g., Dubé et al., 2010).

In contrast, the definition of the representative unit as a linear projection of θi on
a select few characteristics has remained unchanged since initial applications of hierar-
chical Bayesian methods for demand estimation (e.g., Lenk and Rao, 1990; Allenby and
Ginter, 1995; Rossi et al., 1996; Smith et al., 2023). This linear approach imposes strin-

6Bracket notation [n] ≡ {1, . . . , n} denotes the set of positive integers up to n.
7Although missing values in Zi are not explicitly considered in this paper, HART can readily be

extended to these settings by modelling the joint distribution of characteristics (e.g., Padilla and Ascarza,
2021).

8See Allenby and Rossi (2019) for a recent review, and Rossi (2014) for a textbook treatment.
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gent use of even low-dimensional characteristics as the introduction of interactions and
non-linearities quickly becomes intractable (Padilla and Ascarza, 2021). Similarly, despite
rich observed characteristics often readily available in modern datasets (Chintagunta et
al., 2016; Bradlow et al., 2017), the linear specification cannot take advantage of these
potentially high-dimensional characteristics. Both Allenby and Rossi (2019) and Dew
et al. (2024) thus identify approaches for flexible dependence on potentially many ob-
served characteristics within hierarchical Bayesian models as a potential avenue for future
research.

I propose to define the representative unit as a flexible function of potentially many
observed characteristics via a sum-of-trees model. This first-stage prior is given by

θi = ∆(Zi) + εi, (1)

where εi is a mean-zero random variable and ∆(Zi) denotes a sum-of-trees model of the
observed characteristics Zi.9 For ease of exposition, I consider the simple normal model
of heterogeneity where εi ∼ N (0,Σ), but emphasize that the approach can readily be
extended to richer models of heterogeneity.

In nonparametric regression of a scalar-valued outcome onto covariates, sum-of-tree
models are widely used, for example, as frequentist random forests (Breiman, 2001) or
as Bayesian Additive Regression Trees (BART) (Chipman et al., 2010). The sum-of-
tree model considered here differs in that the dependent variable is a vector-valued and
unobserved parameter θi. For illustration, consider first the simplest case where θi is
scalar-valued, mean-zero, and εi ∼ N (0, 1). If θi were observed directly, this corresponds
to a simplified setting of the nonparametric regression considered in Chipman et al. (2010).
The representative unit is then defined as a sum of H regression trees, where by default
H = 200. Each tree h ∈ [H] is characterized by 1) a sequence of nodes that partition the
support of Zi into Gh terminal leaves via splitting rules of the form Z

(k)
i < c, where c is a

constant and Z(k)
i is the k-th component of Zi, and 2) corresponding coefficients λhg for all

terminal leaves g ∈ [Gh]. Let (Rh,Λh) denote the collection of splitting rules and terminal
leaf parameters of the hth tree, respectively. A sum-of-trees model, parametrized by the
collection of trees and leaf coefficients {(Rh,Λh)}h∈[H], is then given by

δ(Zi; {(Rh,Λh)}h∈[H]) =
H∑

h=1

Gh∑
g=1

λhg1{Zi ∈ Zhg}, (2)

9Alternatively, the first-stage prior can be formulated for known transformations of (components of)
θi. For example, to enforce a negative own-price elasticity in a discrete choice setting, the price coefficient
could be reparametrized to − exp(θ̌price

i ). The first-stage prior (1) would then instead be placed on θ̌price
i .

Note that this also requires adjustments to the prior variance Σ to account for the log-scale of the price
coefficient (Allenby and Rossi, 2019).
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where Zhg denotes the partition corresponding to the gth terminal leaf of the hth tree.
The example in Figure 1 illustrates this simple sum-of-trees model.

Figure 1: Example of a Sum-of-Trees Model

Z
(1)
i < −0.6

λ11 Z
(2)
i < 0.2

λ12 λ13

No Yes

No Yes

+ · · · +
Z

(3)
i < 0.6

λH1 λH2

No Yes

Notes: Illustrative example of a sum-of-trees model showing the first and the Hth tree. The splitting rules are
based on three observed characteristics Z

(1)
i , Z

(2)
i , and Z

(3)
i . The terminal leaves of the first and Hth tree

correspond to coefficients (λ11, λ12, λ13), and (λH1, λH2), respectively.

Despite their seemingly simple construction as additions of independent step-functions,
sum-of-tree models provide accurate approximations to nonlinear (and linear) functions of
observed characteristics Zi. This feature—paired with appropriate statistical tools to es-
timate the model—has made them a staple of nonparametric regression.10 It also suggests
they are well-suited for granularly-defined representative units in marketing applications.

Of course, this most simple standard normal scalar-valued case bears little resemblance
to actual marketing applications where the demand parameters θi are nearly always vector-
valued. Empirical research also highlights potential correlations between different compo-
nents of θi, for example, consumers’ responsiveness to different marketing mix variables
and their implications for marketing counterfactuals (e.g., Allenby and Ginter, 1995). In
these settings where εi ∼ N (0,Σ), I define the representative unit as a scaled vector of
D ≡ dim(θi) mutually distinct sum-of-trees models—that is,

∆(Zi;µ,Σ, {(Rdh,Λdh)}d∈[D],h∈[H]) ≡ µ+ Σ1/2


δ(Zi; {(R1h,Λ1h)}h∈[H])

...
δ(Zi; {(RDh,ΛDh)}h∈[H])

 (3)

where Σ1/2 is the Cholesky decomposition of Σ and µ is a D-dimensional vector of un-
conditional means.11 Note that each sum-of-trees model targets a main component of the

10See, for example, Mullainathan and Spiess (2017) and Athey and Imbens (2019) for a discussion
of random forests targeted at applied researchers, and Hahn et al. (2020) and Hill et al. (2020) for a
discussion of BART.

11Note that while the representative consumer ∆(·) and Σ are identified as the conditional expectation
and covariance of θi, the unconditional mean µ and the sum-of-tree parameters are not identified. For
example, one might add a constant c to µ and subtract Σ−1/2 c

H from all leaf parameters. Similarly, one
can arbitrarily order the individual trees within a factor. Researchers should thus be careful to interpret
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representative unit ∆(·) but also contributes to other correlated components. In this re-
gard, the scaled sum-of-trees model (3) resembles a factor model with loadings determined
by the covariance of unit-level unobserved heterogeneity.12

The first-stage prior (1) using the sum-of-trees factor model (3) allows for shrinking
demand parameters to a granularly-defined representative unit—one that is representative
of the population of units with similar observed characteristics Zi. As in conventional
hierarchical models, a smaller variance Σ corresponds to shrinking unit-specific parameters
θi towards the corresponding representative unit ∆(Zi) more tightly.

While flexible dependence on potentially many observed characteristics of the repre-
sentative unit ∆(·) is the key benefit of the proposed approach, the representative unit
cannot be arbitrarily granular without also losing all informational value. For example,
even with a single continuous Zi, no two units share the same characteristics and hence
the only arbitrarily representative unit would be the unit itself. Similarly, the variance
Σ should be sufficiently concentrated to impose meaningful shrinkage (Lenk and Orme,
2009). Careful consideration of the choice of second-stage prior over the parameters
{(Rdh,Λdh)}h∈[H], µ, and Σ is thus crucial for any practical application.

2.3 Second-stage prior

The second-stage prior defines a probability distribution over the first-stage prior param-
eters. This is done straightforwardly for the unconditional mean µ and the prior variance
Σ where I consider the standard independent conjugate priors. That is, the unconditional
mean µ has a normal second-stage prior µ ∼ N (µ,A−1) with mean µ and covariance A−1,
and Σ has an inverse-Wishart second-stage prior Σ ∼ IW(ν,Ψ) with degrees of freedom
ν and scale matrix Ψ. Because µ and Σ are parametric and the cross-section of units n
is typically large in marketing applications, these second-stage priors on (µ,Σ) are often
dominated by the data.13

Greater care is needed for the sum-of-trees parameters {(Rdh,Λdh)}d∈[D],h∈[H], where
Rdh and Λdh are the tree structure and leaf coefficients of the hth tree in the dth sum-of-
tree model. Due to their high dimension, naive applications to even large cross-sections
can result in overly granular (and thus non-informative) models. As usual, the Bayesian
approach introduces proper probability distributions over all parameters—the variables

only the identified first-stage parameters ∆(·) and Σ.
12This factor construction of vector-valued sums-of-trees model is new also in the larger literature

on multivariate BART with observed outcomes (e.g., Chakraborty, 2016; Um et al., 2023; Esser et al.,
2025). As illustrated in Section 3.2, the proposed sum-of-trees factor model (3) substantially simplifies
posterior sampling by allowing parallel (rather than sequential) draws across the D sets of parameters
{(Rdh, Λdh)}h∈[H].

13Appendix A provides default values for the second-stage hyperparameters (ν, Ψ), as well as hyperpa-
rameters that define the prior over the sum-of-trees parameters.
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to split on, the split cutoffs, and the terminal leaf coefficients—to regularize the represen-
tative unit.14 I impose independent regularizing priors over the parameters of each of the
d ∈ [D] sum-of-trees models {(Rdh,Λdh)}h∈[H], that is,

π
(
{(Rdh,Λdh)}d∈[D],h∈[H]

)
=

D∏
d=1

π({(Rdh,Λdh)}h∈[H]),

where π({(Rdh,Λdh)}h∈[H]) is constructed by adapting the BART prior of Chipman et al.
(2010). This prior further simplifies the specification via independence of the h ∈ [H]
trees and g ∈ [Gdh] terminal leaves

π({(Rdh,Λdh)}h∈[H]) =
H∏

h=1
π((Rdh,Λdh)) =

H∏
h=1

Gdh∏
g=1

π(λdhg|Rdh)

π(Rdh), ∀d ∈ [D].

The prior over the tree structure Rdh is constructed following Chipman et al. (1998)
who propose an iterative scheme: First, at a node of depth q(= 0, 1, 2, . . .), the tree splits
into two nodes with probability

α(1 + q)−β, α ∈ (0, 1), β ∈ [0,∞),

where α controls the base rate of splits and β controls decay of the probability of splits
as the depth of the node increases. At the default values α = 0.95 and β = 2 proposed
by Chipman et al. (2010), this prior strongly prefers shallower trees with two or three
terminal nodes. For example, for the first tree in Figure 1 with three terminal nodes, the
prior probability of increasing its number of terminal nodes is 0.12. The prior probability
of a tree with 5 or more terminal nodes is 0.03. Second, conditional on splitting a node,
the prior split rule selects the kth characteristic Z(k)

i with probability 1/K and the split
point c uniformly over its range.15

Conditional on the tree structure Rdh, the prior over the terminal leaf coefficients
λdhg is N (0, σ2

λ). To set σ2
λ, Chipman et al. (2010) propose to pre-process the dependent

variable to lie within ±0.5 and then choose a prior variance that assigns large prior
probability of the sum-of-trees model to this range. Since I employ sum-of-tree models
within a hierarchical framework where the coefficients θi are themselves unobserved, this
simple pre-processing approach does not apply. Instead, I set σ2

λ such that the prior
representative unit ∆(·) and the coefficients θi have largely overlapping distributions. The

14Note that this approach to regularization of Bayesian sums-of-trees models as fully probabilistic
models contrasts their frequentist analogues. Frequentist sum-of-trees models like random forests are
typically defined as loss-minimizing deterministic functions of the data, that are regularized through
greedy and constrained loss-minimization.

15Unordered categorical characteristics are commonly accommodated via one-hot encoding, but other
approaches are also possible.
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first-stage prior construction (1) is convenient for this purpose: Because each sum-of-trees
factor in (3) is shifted by µ and has loadings Σ1/2, prior overlapping distributions can be
achieved by setting σ2

λ such that any single sum-of-trees factor (2) assigns approximately
95% probability to the range of a standard normal random variable. With H independent
trees in each sum, I thus set a default value of σλ = τ√

H
with τ = 1. Given a default number

of trees of H = 200, this prior strongly regularizes individual terminal leaf coefficients
towards zero. Regularization of the terminal leaf coefficients can readily be adjusted by
setting τ to a different value.

Remark 2.1 (Adaptively sparse representative units). Linero (2018) propose a modifi-
cation of the prior over the tree structure Rdh to facilitate nonparametric regression with
many predictors. Instead of fixed equal prior probabilities of selecting a characteristic
Z

(k)
i for the split rule, variable selection is modelled as a multinomial random variable

with a Dirichlet prior over its selection probabilities. Linero (2018) shows that this prior
construction induces exact sparsity in the dependence of the sum-of-trees model on the ob-
served characteristics. In empirical applications with many characteristics, this approach
appears highly successful compared to standard BART and alternative nonparametric re-
gression estimators such as random forests or gaussian processes.

Since HART builds on top of individual sum-of-trees models, incorporating the Dirich-
let prior of Linero (2018) for variable selection is straightforward. It also does not no-
ticeably impede computation as the multinomial-Dirichlet update is conjugate. I apply
Dirichlet HART in Section 5.4 to illustrate benefits of sparsity-inducing priors for char-
acterizing the representative unit.

2.4 Posterior distribution

The target parameters of a HART likelihood model are the unit-specific parameters θi, the
covariance of unobserved heterogeneity Σ, the unconditional mean µ, and the parameters
of the stacked sum-of-trees model {(Rdh,Λdh)}d∈[D],h∈[H] that define the representative
unit ∆(·). The joint posterior distribution over these target parameters is given by

π
(
{θi}, µ,Σ, {(Rdh,Λdh)}d∈[D],h∈[H] | D

)
∝
(

n∏
i=1

L(Di|θi)π
(
θi|Zi, µ,Σ, {(Rdh,Λdh)}d∈[D],h∈[H]

))

×
[

D∏
d=1

π
(
{(Rdh,Λdh)}h∈[H]

)]
π(µ)π(Σ),

(4)

where D denotes the full dataset. The corresponding DAG is shown in Figure 2.
Posteriors as in (4) are generally not available in an analytically convenient form.
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Figure 2: DAG of a Generic HART Model

In the next section, I propose a Markov Chain Monte Carlo (MCMC) algorithm whose
samples converge in distribution to (4) to facilitate fully Bayesian inference.

3 Inference via MCMC

This section describes an MCMC algorithm targeting the posterior distribution (4) for a
generic HART likelihood model. The key difficulty in efficient sampling lies in the high-
dimensionality of the sum-of-trees parameters {(Rdh,Λdh)}d∈[D],h∈[H] that render naive
sampling approaches practically infeasible. I illustrate how existing Gibbs-like MCMC
samplers of hierarchical Bayes models with unit-level parameters {θi}i∈[n] can be aug-
mented for HART sampling by leveraging the Bayesian backfitting algorithm of Chipman
et al. (2010). Subsection 3.1 outlines the proposed Metropolis-within-Gibbs algorithm at
a high level. The sampling step to generate draws for the representative unit is described
in additional detail in Subsection 3.2.

3.1 Metropolis-within-Gibbs sampler

The proposed sampler alternates between sampling from the full conditional distributions
of the unit-level parameters, the unconditional mean, the covariance of unobserved het-
erogeneity, and the sum-of-trees parameters. Computation is substantially simplified by
first augmenting the posterior distribution (4) with a partial representative unit

∆∗(Zi; Σ, {(Rdh,Λdh)}d∈[D],h∈[H]) ≡ ∆(Zi;µ,Σ, {(Rdh,Λdh)}d∈[D],h∈[H]) − µ. (5)

After simplifying the full conditionals by factoring the joint posterior distribution and
using (5), this suggests iterating through the following steps:

1. π({θi}i∈[n] | ∆(·),Σ,D)

2. π(µ | {θi}i∈[n],∆∗(·),Σ)

3. π(Σ | {θi}i∈[n],∆(·))

4. π(∆∗(·), {(Rdh,Λdh)}d∈[D],h∈[H] | {θi}i∈[n], µ,Σ)
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Step 1 draws the unit-level parameters. This step takes as given the representative
unit, the covariance of unobserved heterogeneity, and the data. Importantly, whether the
representative unit is defined as a conventional linear projection or a sum-of-trees factor
model—or any other model of the representative unit—does not affect this sampling
step. The sampler thus readily accommodates existing approaches for sampling unit-
level parameters. For example, Rossi et al. (2009) discuss an “improved random walk”
Metropolis step applicable in many marketing models. This step constructs i-specific
proposal distributions for θi based on the Hessian of a weighted average of the pooled and
individual-specific log-likelihoods.16 Recent advances in efficient sampling of hierarchical
models as in Bumbaca et al. (2020) are also readily applicable here.

Steps 2 and 3 are the usual conjugate updates for the mean and covariance matrix of
a multivariate normal with outcomes constructed as θi −∆∗(Zi) and as θi −∆(Zi), respec-
tively. Note that Step 3 is simple due to the augmentation with the partial representative
unit ∆∗(·), as the conjugate updates would otherwise be complicated by the dependence
induced by the loadings in (3).

Finally, Step 4 updates the partial representative unit and the sum-of-trees parameters.
Due to their high dimension, it is the most computationally intensive step. In addition to
their high number, an additional potential complication is that their dimension changes
as trees grow or are pruned. For a single sum-of-trees model with an observed normally
distributed scalar-valued outcome, Chipman et al. (2010) propose a “Bayesian backfitting”
algorithm that effectively samples from the high dimensional posterior without the need
for a transdimensional transition kernel (e.g., Green, 1995). In the next subsection, I
outline how this algorithm can be applied within the hierarchical model considered here.

3.2 Bayesian backfitting for the sum-of-trees parameters

To sample from the full conditional distribution of the partial representative unit ∆∗(·)
and the sum-of-trees parameters {(Rdh,Λdh)}d∈[D],h∈[H], Step 4 is further split into two
substeps:

4. π(∆∗(·), {(Rdh,Λdh)}d∈[D],h∈[H] | {θi}i∈[n], µ,Σ)

4.1 π({(Rdh,Λdh)}d∈[D],h∈[H] | {θi}i∈[n], µ,Σ)

4.2 π(∆∗(·) | {(Rdh,Λdh)}d∈[D],h∈[H],Σ)

This split marginalizes out the representative unit in Step 4.1, which—given that ∆∗(·)
is a deterministic function of the sum-of-trees parameters and Σ—is both immediate and

16The improved random walk Metropolis step is used in bayesm (Rossi, 2023) and thus widely adopted.
See Rossi et al. (2009) Chapter 5.3 for a detailed description.
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makes Step 4.2 computationally straightforward. The core challenge thus lies in Step 4.1.
The simplification of Step 4.1 is due to a reparameterization of the first-stage prior (1).

Applying a Mahalanobis transformation by residualizing with the unconditional mean and
pre-multiplying with the inverse Cholesky decomposition of Σ yields

Σ−1/2(θi − µ) = Σ−1/2Σ


δ(Zi; {(R1h,Λ1h)}h∈[H])

...
δ(Zi; {(RDh,ΛDh)}h∈[H])

+ Σ−1/2εi

⇔ θ̃i =


δ(Zi; {(R1h,Λ1h)}h∈[H])

...
δ(Zi; {(RDh,ΛDh)}h∈[H])

+ ε̃i,

(6)

where now ε̃i ∼ N (0, ID) is a vector of independent standard normal random variables.
Consequently, the conditional distribution of the sum-of-trees parameters factors into D
independent conditional distributions, each depending only on the respective scalar-valued
components θ̃(d)

i ≡ (Σ−1/2(θi − µ))(d), that is,

π({(Rdh,Λdh)}d∈[D],h∈[H] | {θi}i∈[n], µ,Σ) =
D∏

d=1
π({(Rdh,Λdh)}h∈[H] | {θ̃(d)

i }i∈[n]). (7)

Step 4.1 is thus further split into D (embarrassingly parallel) steps, each tasked with a
single draw from the marginal conditional distributions in (7). Importantly, to generate
these single draws, the developed setup allows for the application of a single step of
the Bayesian backfitting algorithm of Chipman et al. (2010), where the Mahalanobis-
transformed components θ̃(d)

i —now scalar-valued, mean-zero, and with unit variance—
play the role of the observed outcome projected onto the characteristics Zi.

Within its application in the proposed sampler, I make no modifications to the Bayesian
backfitting step of Chipman et al. (2010) itself. Because it is central for the computa-
tional feasibility of HART, I nevertheless briefly outline the step for clarity. At its core,
the Bayesian backfitting step is a partially collapsed Metropolis-within-Gibbs step, cycling
through each of the h ∈ [H] trees of the sum-of-trees model:

π((Rdh,Λdh) | {θ̃(d)
i }i∈[n], {(Rdh′ ,Λdh′)}h′∈[H]\{h}), ∀d ∈ [D], h ∈ [H]. (8)

This tree-specific sampling step is greatly simplified via the construction of the partial
residuals

θ̃
(d)
i − δ(Zi; {(Rh′ ,Λh′)}h′∈[H]\{h}) ∼ N (δ(Zi; (Rh,Λh)), 1) , (9)
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where the normal distribution follows directly from (7) and the additivity of the sum-
of-trees model (2). Given conjugacy of (9) and the normal prior over the terminal leaf
coefficients {λdhg}g∈[Gdh] outlined in Section 2.3, this allows for integrating over all ter-
minal leaf coefficients to draw the tree structure Rdh. This marginalization is done an-
alytically and thus requires no computationally prohibitive integral evaluation. A new
tree structure can then be sampled via a simple Metropolis step by randomly growing
or pruning the existing tree using a “birth-death” algorithm proposed by Chipman et al.
(1998).17 After accepting or rejecting the proposed tree structure, the terminal leaf co-
efficients {λdhg}g∈[Gdh] are set via the usual conjugate update for each unique partition
of the characteristics Zi. This completes a single tree-specific draw and the next tree is
targeted. The efficiency of these Bayesian backfitting steps has contributed substantially
to the popularity of BART for nonparametric regression (e.g., Hill et al., 2020), with the
motivation for the proposed HART likelihood models being no exception.18

4 Example: HART Logit Model

To illustrate HART likelihood models, I apply the proposed flexible hierarchical structure
to the canonical setting of static discrete choice with multinomial logit likelihoods as in
Allenby and Ginter (1995), Rossi et al. (2009), Smith et al. (2023), and many others.
This choice model is widely applied in conjoint analysis and consumer brand choice, and
I apply the HART logit model in these contexts in the empirical applications in Sections
5 and 6, respectively.

Consider a sample of i ∈ [n] consumers each associated with historical demand data
{(Yit,Wit)}Ti

t=1 for Ti purchase occasions, where Yit is a consumer’s choice among J options
and Wit ≡ (Wijt)J

j=1 is a vector of product characteristics such as brand intercepts, prices,
and other marketing mix variables. I assume that at every purchase occasion t, a consumer
chooses option j ∈ [J ] with probability

P(Yit = j|θi,Wit) =
exp

(
W⊤

ijtθi

)
∑J

l=1 exp
(
W⊤

iltθi

) , ∀ (i, j, t),

where θi is a D-dimensional consumer-specific parameter vector. The model follows from
the standard latent utility framework with linear-index deterministic utilities W⊤

ijtθi and
17Chipman et al. (1998) suggest building a new tree with one of four randomly selected moves: w.p.

0.25 a new terminal node is added, w.p. 0.25 a pair of terminal nodes is pruned, w.p. 0.4 a nonterminal
splitting rule is changed, w.p. 0.1 splitting rules between a parent and child node are swapped.

18He and Hahn (2023) propose XBART, an accelerated algorithm for sampling stochastic sum-of-tree
models. Combining XBART with HART is likely to further improve sampling efficiency while maintaining
flexibility of the representative consumer model.
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i.i.d. additively separable T1EV latent utility shocks (McFadden, 1974). Under conven-
tional assumptions on static demand (e.g., Rossi et al., 1996), this implies a consumer-
specific likelihood given by

L(Di|θi) ≡
Ti∏

t=1
Lt(Yit|θi,Wit) =

Ti∏
t=1

J∏
j=1

P(Yit = j|θi,Wit)1{Yit=j}, ∀i. (10)

The logit likelihood of a consumer’s purchase history (10) can be directly substituted
into the generic posterior distribution in (4). In this context, ∆(·) captures a represen-
tative consumer—granularly defined using their characteristics Zi—towards which the
preference parameters θi are shrunken. This is particularly important for demand estima-
tion in many consumer packaged goods (CPGs) categories where purchases rarely exceed
12 per year (Allenby and Rossi, 1999), and in common conjoint applications where re-
spondents are rarely exposed to more than 16 profiles to prevent survey fatigue (Allenby
et al., 2019).

To sample from the HART logit model’s posterior, the generic Metropolis-within-
Gibbs algorithm of Section 3.1 requires a suitable first step. I use the “improved random
walk” of Rossi et al. (2009) and find that it results in efficient sampling in the considered
applications of the HART logit model to which I turn next.

5 Application I: Credit Card Conjoint

This section applies the proposed HART logit model to the conjoint dataset considered in
Allenby and Ginter (1995, AG95, hereafter) on out-of-state credit card design. The key
finding is that HART finds substantively richer heterogeneity associated with observed
respondents’ characteristics than conventional specifications that define the representative
consumer as a linear function of characteristics. I show that knowledge of greater hetero-
geneity can be exploited by managers for product design targeted to specific consumer
segments in the new market.

After a brief overview of the conjoint data of AG95 in Section 5.1, I discuss the
main estimation results in Section 5.2. Section 5.3 presents counterfactual estimates for
different product designs. Finally, Section 5.4 illustrates robustness of Dirichlet HART to
the inclusion of many irrelevant consumer characteristics.

5.1 Data

AG95 consider data from 946 customers of a regional bank collected in a telephone conjoint
on credit card attributes. The bank’s main motivation stemmed from an effort to expand
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to customers in a new market (“out-of-state”). Each respondent offered between 13 and
17 responses to hypothetical choices between two credit cards that were identical in all
considered attributes except for two that varied.19 The authors obfuscate both the identity
of the bank and the specific attribute levels—for easy reference, Appendix B.1 replicates
their overview of credit card attributes and levels. In total, the dataset contains 14,799
binary responses as well as the respondents’ age, income, and gender.

5.2 Demand estimates

I apply both the proposed HART logit model and the conventional hierarchical logit
model considered in AG95. Both models use the respondent-level likelihood in Section
4 where Wijt is a 14-dimensional vector of binary credit card attribute levels and the
respondent-specific coefficients θi are interpreted as the corresponding part-worths. Fol-
lowing AG95, I consider a normal model of heterogeneity in both specifications, using
the default inverse-Wishart second-stage prior for Σ. The only difference in the two ap-
proaches lies in the specification of the representative consumer as a function of the three
demographics: While the proposed HART approach uses a sum-of-trees factor model for
the representative consumer ∆(Zi), AG95 consider a linear model ∆⊤Zi. The components
of the representative consumer are interpreted as expected part-worths of the respective
credit card attribute levels.

The MCMC algorithms are run for 10,500 iterations to obtain posterior samples (see
Remark 5.1 for a runtime comparison). Traceplots of the MCMC draws indicate con-
vergence of the chains after less than 500 iterations, which I discard as burn-in. The
remaining 10,000 draws are used for inference. As an example, Figure 3 shows the tra-
ceplots of the expected part-worths of the out-of-state bank attribute for two consumer
segments. The proposed Metropolis-within-Gibbs sampler shows effective mixing of the
chain. Additional traceplots are provided in Appendix B.2.

I begin by highlighting several important aspects in which HART and conventional lin-
ear estimates overlap. First, both models find similar overall (or: unconditional) expected
part-worths. Columns (1)-(2) in Table 1 provide posterior means and standard deviations
for selected attribute levels. Both provide evidence that a randomly selected respondent
substantially penalizes an out-of-state credit card. The magnitudes of the low interest
rate and low annual fee part-worths further suggest that the bank may compensate for
the out-of-state penalty by adjusting other credit card attributes.

Similarly, both models find evidence of substantial unobserved heterogeneity. Table 2
19Allenby and Ginter (1995, p. 395) provide the following example of a hypothetical choice scenario:

“The first card has a medium fixed annual interest rate and a medium annual fee. The second card has
a high fixed annual interest rate and a low annual fee.”
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Figure 3: MCMC Traceplot of Expected Part-Worths for Out-of-State Bank

(a) Linear hierarchical prior (b) HART

Notes: Figures show traceplots of expected part-worths for the out-of-state bank attribute. Panel (a) and (b)
show results for the linear hierarchical prior and the HART prior, respectively. Expected part-worths for each
model are evaluated for two consumer segments: older women with low income (solid lines) and middle-aged
men with moderate income (darker dashed lines).

provides a subset of the posterior mean covariance matrix for the proposed HART logit
model. The estimates indicate economically substantial heterogeneity in the out-of-state
part-worths. They further suggest that respondents who are less sensitive to the out-
of-state attribute also more strongly prefer low annual fees (posterior mean correlation:
0.67). In contrast, the correlation in preferences between out-of-state credit cards and
low interest rates is low (posterior mean correlation: 0.11). Posterior covariance estimates
based on the conventional linear model show qualitatively similar levels and correlations
of preferences (see Appendix B.2).

Despite these similarities, a closer inspection of the representative consumer estimates
reveals economically important differences between the approaches. First, where the lin-
ear prior approach identifies monotonic associations between respondents’ characteristics
and their part-worths, HART finds evidence of nonmonotonicity. Figures 4 and 5 show
expected part-worths of the linear and HART logit models as functions of age and income.
Panel (a) of Figure 4 shows that being middle-aged is associated with little sensitivity
to out-of-state credit cards, while both younger and older respondents penalize it more
strongly. Similarly, panel (b) of Figure 5 suggests that the strong positive association be-
tween income and a respondent’s preference for a low interest rate holds primarily for low
and middle-income levels but is mitigated for high income levels. The linear specifications
average over any such nonlinearities, losing potential insights in the process.

In addition to nonlinear associations between preferences and individual character-
istics, the HART logit model also accommodates interactions between respondents’ age,
income, and gender. These nonlinear interactions have substantial impact on the expected
part-worths associated with more granularly-defined consumer segments.
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Table 1: Expected Part-Worths Estimates

Overall Segment 1: Female;
Age=75; Income=20;

Segment 2: Male;
Age=50; Income=30;

Linear HART Linear HART Linear HART
(1) (2) (3) (4) (5) (6)

Low Interest 5.01 4.98 4.08 3.17 4.45 5.10
(0.68) (0.94) (0.48) (0.65) (0.27) (0.56)

Low Annual Fee 4.19 4.17 4.78 4.28 3.69 4.21
(0.70) (1.03) (0.52) (0.74) (0.30) (0.58)

Out-of-State Bank -3.78 -3.78 -4.40 -5.19 -3.96 -2.89
(0.68) (1.04) (0.85) (0.92) (0.40) (0.62)

High Cash Rebate 2.41 2.48 1.71 1.97 1.96 1.71
(0.62) (0.85) (0.50) (0.62) (0.29) (0.50)

High Credit Limit 1.15 1.16 1.16 1.42 1.05 1.41
(0.32) (0.60) (0.33) (0.46) (0.18) (0.37)

Long Grace Period 3.51 3.52 2.48 2.74 2.96 2.88
(0.67) (0.69) (0.36) (0.51) (0.23) (0.39)

Notes: The table shows posterior means of expected part-worths ∆(·) for selected attribute levels.
Posterior standard deviations are in parentheses. Columns (1)-(2) show overall (or: unconditional)
expected part-worths. Columns (3)-(4) and columns (5)-(6) show expected part-worths for two
consumer segments, older women with low income and middle-aged men with moderate income,
respectively. Odd columns correspond to results for the linear hierarchical prior logit model. Even
columns correspond to the HART logit model. Results are based on 10,500 MCMC draws with 500
draws discarded as burn-in.

My discussion focuses on two segments. Segment 1 is defined as older female respon-
dents with low income. Segment 2 is defined as middle-aged male respondents with mod-
erate income. These segments are selected for two primary reasons. First, Segment 1 is
the most populous segment of female respondents in the data of AG95 (see Appendix B.2)
and is chosen because posterior uncertainty of the representative consumer is inversely
related to the number of respondents with similar characteristics. Segment 2 is of similar
size and thus expected to have posterior uncertainty of approximately the same order.
Second, the segments allow for illustration of substantial differences between conventional
linear and HART logit models. Importantly, however, the conclusion that the HART logit
model finds richer heterogeneity does not depend on the specific segments—see Appendix
B.2 for the empirical distribution of posterior means of the expected part-worths for all
respondents.

Table 1 presents results for both segments in columns (3)-(6). The conventional linear
approach finds only moderate differences in the expected part-worths between the two
segments. For example, the difference in the out-of-state part-worths between the two
segments is only 0.44, a difference of approx. 10%, with middle-aged male customers only
slightly less sensitive to the out-of-state attribute than their older female counterparts.
Similarly, the difference in the low interest rate part-worths is -0.37, a difference of ap-
prox. -9%, with middle-aged male customers slightly more keen on low interest rates than
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Table 2: HART Covariance Matrix Estimates

Low fixed interest 8.68 0.30 0.11 0.38 0.24 0.36
(1.50)

Low annual fee 3.52 15.34 0.67 0.47 0.47 0.58
(1.15) (1.90)

Out-of-state bank 1.25 10.07 14.63 0.42 0.46 0.28
(1.16) (1.70) (2.31)

High cash rebate 3.53 5.68 4.92 9.62 0.48 0.71
(1.20) (1.28) (1.16) (1.26)

High credit limit 1.84 4.73 4.47 3.84 6.75 0.47
(0.83) (0.76) (0.89) (0.63) (0.85)

Long grace period 2.49 5.28 2.48 5.12 2.83 5.34
(1.00) (0.90) (0.80) (0.97) (0.62) (0.88)

Notes: The table shows posterior means of the lower-triangular covariance matrix Σ
for selected attribute levels. Posterior standard deviations are in parentheses. The
upper triangular matrix shows correlations. Results are based on 10,500 MCMC
draws of the HART logit model with 500 draws discarded as burn-in.

their older female counterparts. In stark contrast, HART finds substantially different
preferences for the two segments: The differences between the expected part-worths in
the out-of-state and low interest rate attributes are 2.3 (approx. 44%) and -1.93 (ap-
prox. -61%), respectively. In the next section, I illustrate how managers can exploit this
heterogeneity for targeted product design.

5.3 Counterfactual estimates

For the bank considering an expansion of its credit card offering outside its existing
operating region, knowledge about consumer segments that are most likely to respond
to a new credit card is crucial for both product design and advertising. Indeed, AG95
emphasize (p.392): “To succeed in a competitive environment, organizations must identify
which customers are most likely to buy new products and services [. . . ].” With its ability
to characterize the demand of granular consumer segments using observed characteristics,
the proposed HART logit model is ideally suited for this task of focusing attention on key
segments.

Following AG95, I consider the design of an out-of-state credit card that is most likely
to succeed against existing credit card offerings. Table 3 presents counterfactual choice
probabilities for potential offerings against a baseline in-state credit card. Importantly,
these counterfactuals characterize the comprehensive demand response capturing both ob-
served preference heterogeneity through the representative consumer ∆(·) and unobserved
preference heterogeneity—including correlated preferences—captured by Σ. Continuing
the previous discussion, I focus on compensating for the out-of-state attribute by offering
a credit card with low interest rates or a low annual fee and compute the counterfactual
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Figure 4: Conditional Part-Worths Estimates (Bank Out-of-State)

(a) Age (b) Income

Notes: Figures show the posterior mean expected part-worth ∆(·) of the out-of-state bank attribute as functions
of respondents’ age (panel (a)) and income (panel (b)). Expected part-worths are computed by integrating over
the empirical distribution of other characteristics. Shaded areas denote 90% point-wise credible intervals.
Expected part-worths of the linear hierarchical prior are shown in red and of the HART model in blue. Results
are based on 10,500 MCMC draws with 500 draws discarded as burn-in.

shares in the two segments of older female customers with low income, and of middle-aged
male customers with moderate income.

Table 3: Counterfactual Shares of Out-of-State Credit Card Offerings

Segment 1: Female;
Age=75; Income=20;

Segment 2: Male;
Age=50; Income=30;

Credit Card Linear HART Linear HART
(1) (2) (3) (4)

Out-of-State Bank 0.16 0.11 0.18 0.25
(0.05) (0.05) (0.04) (0.06)

Out-of-State Bank & Low Interest 0.48 0.35 0.53 0.66
(0.08) (0.09) (0.06) (0.07)

Out-of-State Bank & Low Annual Fee 0.52 0.45 0.48 0.57
(0.08) (0.08) (0.05) (0.07)

Notes: The table shows posterior means of counterfactual market shares of three out-of-state credit
card offerings evaluated against a baseline in-state credit card. Posterior standard deviations are
in parentheses. Columns (1)-(2) and columns (3)-(4) show counterfactual market shares for two
consumer segments, older women with low income and middle-aged men with moderate income,
respectively. Odd columns correspond to results for the linear hierarchical prior logit model. Even
columns correspond to the HART logit model. Results are based on 10,500 MCMC draws with 500
draws discarded as burn-in.

Both the HART and conventional linear logit model estimates find low expected de-
mand for out-of-state credit cards when other attributes are at baseline. Similarly, both
models suggest that low interest rates and annual fees can increase attractiveness of the
offering. Yet, the models starkly contrast in their ability to differentiate between consumer
segments that are worth targeting. The linear estimates suggest no substantial differences
across both segments and compensating attributes. For example, the counterfactual share
of a low annual fee out-of-state credit card among older women with low income is 0.52,
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Figure 5: Conditional Part-Worths Estimates (Low Interest)

(a) Age (b) Income

Notes: Figures show the posterior mean expected part-worth ∆(·) of the low interest rate attribute as functions
of respondents’ age (panel (a)) and income (panel (b)). See also the notes of Figure 4.

while an offering with a low interest rate among middle-aged men with moderate income
is 0.53. With posterior standard deviations around 0.08, these differences are unlikely
to inspire confidence in a manager forced to choose which credit card to offer and which
potential customers to advertise it to. In contrast, the HART estimates provide clear
evidence in favor of targeting a low interest card to the segment of middle-aged men: the
corresponding counterfactual share is 0.66 versus 0.45 for the low annual fee card targeted
to the segment of older women with a posterior standard deviation of about 0.08.

These stark differences in the models’ ability to differentiate between segments that
are worth targeting is also reflected in the counterfactual shares for the individual credit
card offerings. Figure 6 shows the posterior distribution of counterfactual shares of a
low interest out-of-state credit card for both segments.20 The posterior counterfactual
distributions of the linear approach in panel (a) overlap substantially, indicating little
gain to targeted advertising or other personalized approaches. The analogous HART
logit posteriors in panel (b) show economically and statistically significant differences,
clearly outlining the bank’s opportunity to target a low interest rate card to the segment
of middle-aged men with moderate income.

5.4 Robustness to high-dimensional characteristics

In addition to restrictive functional forms, previous research has raised concerns about
the intractability of linear representative consumer specifications when the number of ob-
served characteristics is large (e.g., Padilla and Ascarza, 2021). I use the setting of AG95
to illustrate the effects of many characteristics in a placebo exercise where the three demo-

20Appendix B.3 provides additional plots of posterior counterfactual shares.
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Figure 6: Counterfactual Shares for an Out-of-State Credit Card with Low Interest Rate

(a) Linear hierarchical prior (b) HART

Notes: The figure shows the posterior distribution of expected counterfactual shares of an out-of-state credit
card with low interest rate against a baseline in-state credit card. Panel (a) and (b) show results for the
linear hierarchical prior and the HART prior, respectively. Expected counterfactual shares for each model are
evaluated for two consumer segments: older women with low income (solid) and middle-aged men with moderate
income (dark shaded). Results are based on 10,500 MCMC draws with 500 draws discarded as burn-in.

graphic variables are augmented by additional irrelevant characteristics. These irrelevant
characteristics are 100 simulated standard normal random variables drawn independently
for each of the respondents. Any association between these additional characteristics and
consumer choices is purely spurious by design, which allows us to evaluate competing
models by the robustness of their estimates to the inclusion of these irrelevant character-
istics.

In addition to the linear and HART logit specifications, I also consider Dirichlet HART
logit which augments the sum-of-trees prior with a Dirichlet prior over the variable selec-
tion probabilities. As outlined in Remark 2.1, the Dirichlet HART model is particularly
suitable for high-dimensional settings by directly inducing sparsity. All three models use
the default second-stage prior settings outlined in Appendix A.

Estimates are based on 10,500 MCMC iterations with the first 500 iterations discarded
as burn-in. Efficiency of the MCMC algorithm for both the HART and Dirichlet HART
logit models is only mildly affected. In particular, traceplots indicate convergence of the
HART and Dirichlet HART logit models after less than 500 iterations as in the case
without additional characteristics (see Appendix B.4), and there is no substantial effect
on runtime (see Remark 5.1). In contrast, the runtime of the linear model increases from
approximately 2 minutes to nearly 8.5 hours. Even with this long runtime, traceplots for
the linear hierarchical logit model do not indicate convergence.

To assess the robustness of the models to the inclusion of many irrelevant characteris-
tics, I first assess their out-of-sample predictive accuracy. Table 4 reports the root mean
squared prediction error (RMSPE) of respondents’ binary choices. RMSPEs are estimated
by 10-fold cross-validation in which the last Ti − T̃ choice profiles of randomly selected

25



respondents are assigned to 10 equally-sized subsamples. Here, T̃ denotes the number of
observed profiles for the out-of-sample respondents that is varied between 0, 1, 5, 9, and
14 across the columns of the table. For predictions based on T̃ = 5 observed profiles,
for example, the models are first estimated on the full conjoint data of 9/10ths of the
respondents and the first 5 choice profiles of the remaining 1/10th. The individual-level
posterior predictive distributions are then used to create predictions for the remaining
Ti − T̃ choice profiles of the out-of-sample respondents.21 Varying T̃ in this manner allows
for the assessment of model performance for both known and new consumers.

Table 4: Out-of-Sample RMSPE

# Observed Profiles

0 1 5 9 14

3 Demos.
Linear 0.428 0.425 0.417 0.393 0.367
HART 0.428 0.426 0.415 0.392 0.369

3 Demos. + 100 Noise
Linear 0.481 0.473 0.461 0.432 0.413
HART 0.429 0.426 0.417 0.394 0.369
Dirichlet HART 0.427 0.426 0.417 0.396 0.366

Notes: The table shows root mean squared prediction error (RMSPE) of re-
spondents’ binary choices. RMSPEs are estimated by 10-fold cross-validation
where the last Ti − T̃ choice profiles of randomly selected respondents are
assigned to 10 equally-sized subsamples. T̃ denotes the number of observed
profiles for the out-of-sample respondents that is varied between 0, 1, 5, 9,
and 14 across the columns of the table. Choice predictions are computed
as posterior means over the choice probabilities. The top panel (3 Demos.)
shows results using the three respondent characteristics of AG95. The bottom
panel (3 Demos. + 100 Noise) shows results where respondent characteristics
are augmented by 100 standard normal irrelevant characteristics.

The RMSPE results show that inclusion of 100 irrelevant characteristics substantially
worsens the predictive accuracy of the linear specification but has little effect on the
HART and Dirichlet HART logit models. For completely new consumers with 0 observed
profiles, for example, the RMSPE of the linear specification is 0.481, compared to 0.429
and 0.427 for the HART and Dirichlet HART logit models, respectively. Further, the
irrelevant characteristics cause a lasting drop in the linear first-stage prior’s performance:
the predictive accuracy of the linear specification with 9 observed profiles is 0.432 when
the irrelevant characteristics are included in the first-stage prior. This is worse than its
predictive accuracy for entirely new consumers when only the 3 demographics of AG95 are
used. The inclusion of 100 irrelevant characteristics thus “costs” the linear specification
more than 9 conjoint profiles. No such predictive cost is incurred by the HART and

21Posterior choice predictions are computed as posterior means over the choice probabilities and hence
correspond to the squared-loss Bayes estimator.
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Dirichlet HART logit models.
Of key interest to marketing applications is the robustness of the models’ counterfac-

tual estimates. Figure 7 shows the corresponding posterior distribution of counterfactual
shares of a low interest out-of-state credit card for the two segments previously consid-
ered in Section 5.3. The counterfactual predictions of the linear specifications are nearly
entirely overlapping over the two segments showing no qualitative heterogeneity between
demand of older women and middle-aged men. This additional reduction in estimated
heterogeneity compared to Figure 6 is also reflected in HART estimates. However, while
the linear specification shows posterior distributions of nearly equal dispersion as in the
low-dimensional case, the HART estimates reflect higher posterior uncertainty over the
two segments. In this regard, the HART logit estimates appear to more suitably charac-
terize estimation uncertainty in the high-dimensional setting than the conventional linear
specification.

In contrast to both the linear and HART logit models, the Dirichlet HART logit model
maintains heterogeneous demand for a low interest out-of-state credit card across the two
segments. Akin to the HART estimates of Figure 6, the Dirichlet HART logit model
finds that targeting a low interest rate card to the segment of middle-aged men with
moderate income is more likely to be successful than targeting a low annual fee card to
the segment of older women with low income. Dirichlet HART thus provides the most
robust counterfactual estimates of the three models in the presence of many irrelevant
characteristics.

Note that the Dirichlet HART logit model’s robustness to the inclusion of many ir-
relevant characteristics stems from its ability to induce sparsity in the definition of the
representative consumer by placing a Dirichlet prior over the variable selection probabili-
ties in the sum-of-trees models. This approach allows for a fully Bayesian characterization
of variable importance. Figure 8 shows the posterior distribution of the variable selection
probabilities corresponding to the out-of-state sum-of-trees factor. The plot indicates
that selection probabilities for both income and gender are significantly different from
5%, while there is greater posterior uncertainty about the importance of respondents’
age. Importantly, however, all additional noise characteristics are correctly identified as
unimportant with posterior choice probabilities at or near 0%.
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Figure 7: Counterfactual Shares for an Out-of-State Credit Card with Low Interest Rate

(a) Linear hierarchical prior (b) HART

(c) Dirichlet HART

Notes: The figure shows the posterior distribution of expected counterfactual shares of an out-of-state credit
card with low interest rate against a baseline in-state credit card. Estimates were computed using both the
three demographic variables and 100 irrelevant characteristics. Panel (a), (b), and (c) show results for the
linear hierarchical prior, the HART prior, and the Dirichlet HART prior, respectively. Expected counterfactual
shares for each model are evaluated for two consumer segments: older women with low income (solid) and
middle-aged men with moderate income (dark shaded). Results are based on 10,500 MCMC draws with 500
draws discarded as burn-in.

Figure 8: Posterior Variable Selection Probabilities: Out-of-State Bank

Notes: The figure shows the posterior mean selection probabilities for the out-of-state bank attribute sum-of-
trees factor across all respondents’ characteristics (3 characteristics of AG95 and 100 irrelevant characteristics).
Bars indicate 90% credible intervals. Results are based on 10,500 MCMC draws with 500 draws discarded as
burn-in.
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Remark 5.1 (Run-time Comparison). The table below shows the runtime for the proposed
HART and Dirichlet HART logit models for 10,500 MCMC iterations in the dataset de-
scribed in Section 5.1. The runtime of the conventional linear hierarchical prior computed
via the bayesm package is also reported.

Representative Consumer Model

Linear HART Dirichlet HART

3 Demos. 1.82 23.68 24.83
3 Demos. + 100 Noise 508.40 18.83 21.37

Notes: The table shows the runtime in minutes for 10,500 MCMC iter-
ations. Columns correspond to the linear hierarchical prior, the HART
prior, and the Dirichlet HART prior, respectively. Rows correspond to
estimation based on the three respondents’ characteristics of AG95 (3 De-
mos.), and the three respondents’ characteristics of AG95 augmented by
100 standard normal irrelevant characteristics (3 Demos. + 100 Noise).
All computations were performed sequentially on a single core of a 2019
Intel Core i7-1065G7 processor.

6 Application II: Personalized Mayonnaise Coupons

This section applies the HART logit model to a scanner panel dataset on mayonnaise
purchases. I draw two key conclusions: First, incorporating additional consumer char-
acteristics improves HART’s out-of-sample predictions but worsens those of conventional
approaches. Second, using a double/debiased profit estimator for evaluation of counter-
factual coupon policies, I find that personalization with HART improves profits for both
new and known consumers when compared to existing pricing and conventional person-
alization schemes.

I describe the data in Section 6.1, and compare HART logit profit estimates with
conventional alternatives in Section 6.2. Section 6.3 describes the construction of coun-
terfactual personalized coupon policies and their nonparametric out-of-sample evaluation.

6.1 Data

The dataset is constructed from the household panel and retailer scanner data provided
by NielsenIQ. I focus on the mayonnaise category and consider purchases of 30oz jars of
its three primary brands Hellmann’s, Kraft, and private label in the 2010-2013 period in
seven midwestern states (Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, Wisconsin).
The mayonnaise market in the midwest is substantial, totaling more than 15 million
annual sold units of 30oz jars across the three considered brands and the 6,135 stores in
the retail scanner dataset.

I split the sample into two subsamples: An “estimation” sample spanning 2010-2011
and a “policy” sample spanning 2012-2013. Households are included in the estimation
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sample if they have made at least two purchases of mayonnaise in 2010-2011, resulting in
1,095 households with a total of 8,474 trips. This sample is used for demand estimation in
Section 6.2 and serves as the basis for constructing counterfactual personalized coupons
in Section 6.3. The policy sample includes the first trip of all households who made at
least one mayonnaise purchase in 2012-2013. Of the resulting 1,891 households in the
policy sample, 513 households are also in the estimation sample. I refer to the households
in both subsamples as known consumers and refer to those only in the policy sample as
new consumers. The policy sample is used for out-of-sample evaluation of personalized
coupon policies in Section 6.3.

Each trip is associated with price, feature, and display variables of the purchased
mayonnaise product. I match the household panel to the retailer scanner data to obtain
prices and promotion variables from non-purchased products.22 In addition, NielsenIQ
provides a set of household characteristics. I focus on two sets of characteristics in the
subsequent analysis: First, a set of five demographic variables typically considered in
brand choice models (e.g., Gupta and Chintagunta, 1994; Rossi et al., 1996; Ainslie
and Rossi, 1998; Horsky et al., 2006; Smith et al., 2023). These are income, family
size, and indicators for employment, retirement, and single mothers. Second, a set of
23 extended consumer characteristics that also include the male and female household
heads’ age, indicators for the completion of high school and college, whether a household
head works in a white collar occupation, three marital status indicators, two household
composition indicators, three indicators for the type of residence, two indicators for TV
setup, and finally indicators for owning a microwave, a garbage disposal, and a dishwasher,
respectively. Appendix C provides summary statistics for all subsamples.

6.2 Demand estimates

I consider a total of four brand choice models, each estimated with either the 5 base
characteristics or the 23 extended characteristics. In addition to the proposed HART
and Dirichlet HART logit models, I estimate a conventional hierarchical logit model that
uses a linear specification for the representative consumer (e.g., Smith et al., 2023), as
well as a varying coefficient logit model (e.g. Dubé and Misra, 2023; Farrell et al., 2025).
Unlike the hierarchical approaches, the varying coefficient logit model allows only for
preference heterogeneity as a deterministic function of the consumer characteristics—i.e.,
all preference parameters are fully defined by the representative consumer. I use a second-
order polynomial sieve as a varying coefficient function. For ease of discussion, the varying
coefficient logit model is referred to as the “VC sieve” model. Note that all considered
models are motivated by the same underlying latent utility model outlined in Section

22Prices of non-purchased products are imputed using the algorithm developed by Hitsch et al. (2021).
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4—the only difference is the specification of heterogeneity across consumers.
The hierarchical Bayesian logit models are estimated with 10,500 MCMC iterations

with the first 500 iterations discarded as burn-in. Appendix C provides several MCMC
traceplots that indicate convergence with less than 500 iterations. The VC sieve model is
estimated using the double/debiased machine learning approach of Farrell et al. (2025).23

Throughout, the private label intercept is normalized to 0.
Since the key difference between the models is characterizing heterogeneity in pref-

erences, I begin by comparing conditional preference estimates and refer the reader to
Appendix C for the unconditional estimated coefficients. Figure 9 plots the empirical dis-
tribution of expected price coefficients for each model with both the 5 base characteristics
and the 23 extended characteristics.

Figure 9 indicates that all models find substantial observed heterogeneity. However,
the estimates differ noticeably both across models and included characteristics. First,
using 5 characteristics, the hierarchical specifications result in similar distributions of
observed heterogeneity with differences primarily in the shrinkage of very low coefficients.
While the linear specification in panel (a) shows a mass of representative consumers
with price coefficients below -0.5 and close to 0, HART estimates in panel (e) show only
a few households between -1 and -0.5. Dirichlet HART, the most regularized model,
estimates no households with posterior mean price coefficients above -1. Note also that
the coefficients of the VC logit model indicate overall less-negative coefficients than the
hierarchical specifications.

Second, when extending the characteristics, all models find richer heterogeneity in
preferences as indicated by less-concentrated empirical distributions. However, while the
HART and Dirichlet HART estimates in panel (f) and (h) remain within a sensible range
of coefficients between -0.5 and slightly below -2, the estimates of the linear specifica-
tion in panel (b) substantially disperse. For example, several values of the characteristics
are associated with expected price coefficients below -6. Even if individual households
were to have such extreme preferences, it seems unlikely that whole consumer segments
would. Additionally, several other values of the characteristics are associated with price
coefficients above 0. These results indicate that despite a relatively moderate number of
characteristics, the linear model struggles with extracting meaningful observed hetero-
geneity from the data.

To analyze which consumer characteristics drive observed heterogeneity in the HART
models, I plot the posterior variable selection probabilities in Figure 10. Rather than
plotting the raw posterior probabilities for a single split, I compute the posterior over the

23The additional nonparametric nuisance functions needed to define the orthogonal scores are estimated
with random forest estimators with varying minimum node sizes (1, 10, and 100) and combined via short-
stacking as proposed in Ahrens et al. (2025b).

31



Figure 9: Conditional Price Coefficients

(a) Linear
5 characteristic

(b) Linear
23 characteristic

(c) VC Sieve
5 characteristic

(d) VC Sieve
23 characteristic

(e) HART
5 characteristic

(f) HART
23 characteristic

(g) Dirichlet HART
5 characteristic

(h) Dirichlet HART
23 characteristic

Notes: The figure shows the empirical distribution of estimated conditional price coefficients for models with 5 base
characteristics (panels a, c, e, g) and 23 base characteristics (b, d, f, h). Panels (a) and (b) show results for the linear
hierarchical prior, panels (c) and (d) show results for the VC Sieve model, panels (e) and (f) show results for the HART
prior, and panels (g) and (h) show results for the Dirichlet HART prior. The horizontal axis differs across panels to
accommodate the different ranges of the coefficients. The hierarchical Bayesian point estimates are posterior means
based on 10,500 MCMC draws with 500 draws discarded as burn-in.

probability that a variable is included in a model with 200 independent tree splits.24 This
amplifies posterior differences in the variable selection probabilities and helps differentiate
between variables in a densely dependent tree model. The results highlight substantial
posterior selection probabilities for the extended characteristics not typically included
in demand analyses (e.g., Rossi et al., 1996). For example, panel (a) shows that the
representative consumer loads primarily onto income in the base characteristics, while
panel (b) shows that owning a dishwasher has highest posterior selection probability with
income’s selection probability both lower and less concentrated.

In addition to characterizing observed heterogeneity, the hierarchical Bayesian models
also allow for inference on the distribution of unobserved heterogeneity. Table 5 provides
posterior estimates of the covariance matrix Σ for the linear and HART logit models with
the extended characteristics. First, both models find substantial unobserved heterogene-
ity. Note that this is despite a richer and more flexible specification of the representative
consumer. Second, the distribution of unobserved heterogeneity is more concentrated for
the HART model than the linear model. For example, the marginal posterior variance
of the price coefficient in the HART model is 2.83 compared to 4.27 in the linear model.

24In particular, let τ (k) be the variable selection probability of the kth characteristic. Then the prob-
ability that the kth characteristic is included in a model with 200 splits is 1 − (1 − τ (k))200. Recall that
200 is the default number of trees in the HART and Dirichlet HART models.
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Figure 10: Posterior 200-Tree Variable Selection Probabilities (Price)

(a) 5 characteristics
(b) 23 characteristics

Notes: The figure shows the posterior mean selection probabilities for the price sum-of-trees factor across
consumer characteristics. Probabilities are computed as the posterior mean of the probability that a variable is
included in a model with 200 independent tree splits—i.e., 1 − (1 − τ (k))200 where τ (k) is the variable selection
probability of the kth characteristic for a single split. Panel (a) presents results based on 5 base characteristics.
Panel (b) presents results based on 23 extended characteristics. Bars indicate 90% credible intervals. Results
are based on 10,500 MCMC draws with 500 draws discarded as burn-in.

Overall, the posterior mean square deviation of a household’s preferences, computed as
the trace of the posterior covariance matrix, is 28.7%(=19.1

26.8 −1) lower in the HART model
than in the linear specification.

It is useful to consider an out-of-sample predictive evaluation to further understand
the relative importance of observed and unobserved heterogeneity, as well as to quantify
HART’s improved modelling with the extended characteristics. Focussing on the predic-
tion of a Hellmann’s mayonnaise purchase, which will be the focal brand in the subsequent
counterfactual personalized coupon analysis, Table 6 reports the out-of-sample R2 for each
model. Similar to the predictive exercise in Section 5, I compute the out-of-sample R2 for
each model using a 20-fold cross-validation procedure that varies the number of observed
trips in the out-of-sample households.25

The results reaffirm advantages of HART and Dirichlet HART models over both the
linear specification and the VC sieve model. Even with only 5 base characteristics, HART
improves the predictive R2 by 60.9%(=0.037

0.023 −1) compared to the linear specification. This
improvement is amplified when extending the characteristics to 23, with HART improving

25For example, for predictions based on 1 purchase, the models are first estimated on the full data of
19/20ths of the households and the first purchase of the remaining 1/20th. The household-level posterior
predictive distributions are then used to create predictions for the remaining trips of the out-of-sample
respondents.
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Table 5: Posterior Covariance Estimates (23 Characteristics)

Linear Hierarchical Prior HART

Hellmann’s 7.39 -0.80 -0.05 -0.03 -0.08 5.33 -0.66 0.04 -0.25 0.48
(2.91) (1.75)

Kraft -6.52 10.05 0.28 -0.00 0.08 -4.01 7.44 0.41 0.47 -0.63
(1.03) (2.53) (0.77) (1.69)

Price -0.47 1.83 4.27 0.10 -0.21 0.11 1.86 2.83 0.33 -0.23
(1.34) (1.19) (0.92) (0.64) (0.56) (0.53)

Feature -0.32 -0.04 0.39 2.38 -0.24 -0.79 1.60 0.69 1.48 -0.43
(1.25) (1.90) (1.16) (1.11) (0.78) (1.00) (0.54) (0.65)

Display -0.04 0.57 -0.58 -0.69 2.70 1.52 -2.47 -0.58 -0.72 2.02
(2.37) (2.38) (1.32) (0.97) (1.22) (0.70) (1.05) (0.65) (0.36) (0.74)

Notes: The table shows posterior means of the lower-triangular covariance matrix Σ for linear hierarchical prior and
HART logit model with 23 extended characteristics, respectively. Posterior standard deviations are in parentheses. The
upper triangular matrices show correlations. Results are based on 10,500 MCMC draws of the HART logit model with
500 draws discarded as burn-in.

Table 6: Out-of-Sample R2 for Hellmann’s Mayonnaise Choice

0 purchases 1 purchase 5 purchases

5 Chars. 23 Chars. 5 Chars. 23 Chars. 5 Chars. 23 Chars.

Linear 0.023 -0.011 0.397 0.385 0.481 0.462
HART 0.037 0.049 0.412 0.412 0.480 0.482
Dirichlet HART 0.039 0.048 0.408 0.411 0.484 0.479
VC Sieve 0.032 0.004 0.053 0.033 0.078 0.069

Notes: The table shows out-of-sample R2 of consumers’ choice of Hellmann’s mayonnaise. Results are presented
for model predictions based on 5 base characteristics (5 Chars.) and 23 extended characteristics (23 Chars.).
R2 are estimated by a 20-fold cross-validation procedure that varies the number of observed trips in the out-of-
sample households (0, 1, and 5 observed purchases). Choice predictions for the linear hierarchical prior, HART
prior, and Dirichlet HART prior are computed as posterior means over the choice probabilities. VC Sieve uses
plug-in choice probability predictions.

the predictive R2 by 113%(=0.049
0.023 − 1). Both the linear specification as well as the VC

logit model struggle with the extended set of characteristic, with the linear specification
obtaining a negative out-of-sample R2 for previously unseen households. This points
again to the substantial challenges in incorporating even moderately many characteristics
in existing hierarchical approaches.

Further, the results indicate the importance of adapting to accumulating purchase
history. Even for households with only one historical purchase, the hierarchical approaches
obtain substantial improvements in out-of-sample predictive performance. The VC logit
model, which does not explicitly adapt to consumers’ purchase history, sees no comparable
improvement. These results on the importance of purchase history for known consumers
mirror those of Rossi et al. (1996) and Smith et al. (2023), and highlight a caveat of
machine learning approaches like those considered in Dubé and Misra (2023) and Farrell
et al. (2025).
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As discussed in Allenby and Rossi (2019), evaluating predictive performance does not
suffice to confidently judge the marketing value of competing models. Instead, a concrete
decision context is needed. I consider counterfactual personalized coupons in the next
section for this purpose.

6.3 Counterfactual personalized coupons

I consider a nonparametric policy evaluation approach to assess the marketing value of
the proposed HART and Dirichlet HART approaches. At a high level, this evaluation
procedure is conducted in three steps. In step 1, each model is estimated on the 2010-
2011 estimation sample. Given the resulting estimates, step 2 constructs personalized
coupon policies for all households in the 2012-2013 policy sample. Finally, in step 3, the
couponing policies of each model are evaluated by estimating the corresponding expected
counterfactual profits. Importantly, no parametric assumptions on the demand or supply
are needed for estimation of the counterfactual profits. The approach thus presents an even
comparison across the considered models of consumer heterogeneity. Figure 11 provides
an illustration of the three steps for evaluation of the HART logit model. Throughout,
I take the position of the focal manufacturer Hellmann’s with the aim to improve their
profits from sales of 30oz mayonnaise jars.

Figure 11: Counterfactual Personalized Coupon Evaluation Pipeline

Estimation Sample

1. Obtain posterior:

Policy Sample

2. Construct coupon policies:

Known:

New:

3. Evaluate coupon policies:

price mc

The approach to nonparametric policy evaluation considered here is similar to the
evaluation of targeting policies with observational data in Smith et al. (2023). I differ
primarily in the use of a double/debiased machine learning (DML) estimator of coun-
terfactual profits rather than an inverse propensity score (IPW) estimator as in Smith
et al. (2023). As discussed below, the DML estimator is advantageous as it readily ac-
commodates potentially many controls without imposing parametric functional forms on
the propensity score.

The key benefit of the nonparametric policy evaluation approach is its evaluation of
coupon policies generated by different demand models on a common metric. This allows
for disentangling the construction from the evaluation of competing coupon policies in
a manner not accommodated by within-model evaluation approaches as in, for example,
Rossi et al. (1996). However, the nonparametric approach also limits the set of policies
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that can be evaluated to those that assign only a few discrete coupon values observed
in the policy sample. Researchers thus face a trade-off between the flexibility of the
coupon policy construction and their ability to evaluate it. I focus on the nonparametric
evaluation of such highly restricted coupon policies but emphasize that the proposed
HART and Dirichlet HART models can be used to construct much richer personalization
schemes.

Step 1 of the evaluation procedure is completed given the model estimates on the
2010-2011 subsample obtained in Section 6.2. To construct personalized coupon policies
for the hierarchical Bayesian models (step 2), I follow the vast literature on Bayes-optimal
managerial decisions (e.g., Green, 1963; Rossi et al., 1996) and define the targeting policies
γ∗

i as maximizing posterior expected profits:

γ∗
i ≡ arg max

γ∈Γ
Eθi|D [P(Yi = 1|θi, price1 − γ)(price1 − mc1 − γ)] , (11)

where Γ denotes the considered coupon values, P(Yi = 1|θi, price1 −γ) denotes the model-
implied probability of purchasing Hellmann’s at price1 − γ, and (price1 − mc1 − γ) de-
notes the post-coupon profit associated with a sale of a Hellmann’s mayonnaise jar. I
set price1 = 4.3 as the non-discounted price and consider coupons with values Γ =
{0, 0.4, 1.4}. Following Smith et al. (2023) who also consider Hellmann’s mayonnaise
in a similar time period, I set the marginal cost to mc1 = 2.50. Coupon policies are com-
puted with the prices of Kraft and private label mayonnaise equal to their modal prices
of 3.6 and 2.9, and with all feature and display variables equal to zero.

Note that the Bayes-optimal policies defined in (11) fully account for posterior uncer-
tainty in a household’s preferences and optimally adapt to their historical choice behavior.
For a new consumer who is in the policy sample but not the estimation sample, for ex-
ample, the optimal personalized coupon is found by integrating profit over the posterior
distribution of observed and unobserved heterogeneity:

π(θi|Zi,D) = E∆(·),Σ|D [π(θ|∆(Zi),Σ)] .

For consumers with longer purchase histories, the posterior distribution of preferences
diverges from the representative consumer as discussed in Section 2. Because no posterior
distribution is available for the VC sieve model, I instead use the point estimates to
construct the corresponding personalized coupon policy. This “plug-in” approach does not
account for posterior uncertainty and does not adapt to a household’s purchase history.

Step 3 compares the corresponding expected counterfactual profits given the person-
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alized coupon policies γ∗ that map individuals to discrete coupon values Γ—that is,

Πγ∗

0 ≡ E [Yi(γ∗
i )(price1 − mc1 − γ∗

i )] , (12)

where Yi(γ) is a household’s counterfactual purchase outcome of Hellmann’s mayonnaise
at coupon value γ. This nonparametric policy evaluation approach is similar to the
evaluation of targeting policies using experimental data in Simester et al. (2020a) and
Hitsch et al. (2024) but can (also) be applied in an observational setting as in Smith et al.
(2023). In this observational setting, identification of expected counterfactual profits is
achieved by assuming that retail prices are as good as randomly assigned conditional on a
set of control variables. The control variables I consider here are the extended household
demographics along with month, year, and state fixed effects.26

The observational profit evaluation in this paper differs from that in Smith et al.
(2023) by using a double/debiased machine learning (DML, Chernozhukov et al., 2018)
estimator rather than an inverse propensity score (IPW) estimator. This DML estimator
is obtained by noting that (12) can be rewritten as

Πγ∗

0 =
∑
γ∈Γ

E [Yi(γ)1{γ = γ∗
i }(price1 − mc1 − γ)] . (13)

Note that this is a sum of weighted average potential outcomes with weights given by
the product of post-coupon profit (price1 − mc1 − γ) and an indicator equal to one if the
coupon value γ and the targeted coupon value γ∗

i are equal. It thus follows that a DML
estimator for (12) can be constructed using the sum the orthogonal scores corresponding
to weighted average potential outcomes at each value of the coupon.27

In contrast to the here-considered DML estimator, the IPW estimator of Smith et al.
(2023) is not based on an orthogonal score. As illustrated in, for example, Ahrens et al.
(2025a), this implies worse asymptotic properties and prohibits use of flexible machine
learning methods for estimation of the propensity scores. The DML estimator is advanta-
geous as it readily accommodates potentially many controls without imposing parametric
functional forms on the propensity score. Inference for the DML estimator follows directly
from Theorems 3.1 and 3.2 in Chernozhukov et al. (2018) given sufficiently high-quality
nuisance estimators. As suggested in Ahrens et al. (2025b), I consider a diverse set of
nine different nuisance estimators that are aggregated to minimize out-of-sample MSE.
See Appendix D for implementation details and model averaging weights.

26Appendix D details and discusses the identification assumptions for counterfactual profit estimation
in the mayonnaise scanner data.

27See, for example, Appendix A.1.1 in Ahrens et al. (2025a) for the orthogonal score of a (single)
weighted average potential outcome. Dudik et al. (2011) construct a parametric doubly robust counter-
factual estimator based on the same score.
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Table 7 reports the estimated expected counterfactual profits for each model. In addi-
tion, I also report the estimated counterfactual profits for uniform coupons of $0 (“Never
Coupon”) and $1.4 (“Always Coupon”), as well as a couponing policy that mimics the re-
alized prices in the policy sample (“Existing Pricing”). Each counterfactual profit should
be interpreted as the expected profit of targeting a mayonnaise-purchasing household
with the corresponding coupon policy. To put estimates into perspective, recall that in
the 6,135 stores in the midwest-US market of the NielsenIQ retail scanner data, there are
approximately 15 million annual sales of 30oz mayonnaise jars across the 3 considered
brands.

Table 7: DML Expected Counterfactual Profit Estimates (in Cents)

New Consumers Known Consumers All Consumers

5 Chars. 23 Chars. 5 Chars. 23 Chars. 5 Chars. 23 Chars.

Personalized Coupons
Linear 30.11 30.05 42.99 33.62 33.60 31.02

(3.01) (2.94) (8.48) (6.90) (3.18) (2.85)
HART 29.36 34.00 44.88 39.35 33.57 35.45

(3.05) (4.18) (8.15) (8.40) (3.14) (3.81)
Dirichlet HART 28.96 31.19 38.12 43.91 33.44 34.64

(3.05) (3.54) (5.83) (8.23) (3.19) (3.41)
VC Sieve 24.83 25.60 37.14 32.87 27.37 27.73

(5.62) (4.14) (5.76) (5.68) (4.66) (3.75)

Ad-hoc Coupons
Existing Pricing 22.13 34.84 28.41

(9.63) (12.43) (7.97)
Never Coupon 29.41 37.90 31.71

(3.02) (5.83) (2.71)
Always Coupon 23.31 25.44 23.89

(1.60) (2.75) (1.39)

Notes: The table shows double/debiased machine learning counterfactual profit estimates across coupon policies estimated
on the 2012-2013 policy sample. Standard errors are in parentheses. Profits are in cents and per mayonnaise-purchasing
household. “New Consumers” and “Known Consumers” denote households not included and included in the 2010-2011
estimation sample, respectively. “All Consumers” presents joint profits for the two groups of consumers. The top panel
(Personalized Coupons) shows profits corresponding to coupon policies based on the linear hierarchical prior, HART prior,
Dirichlet HART prior, and VC Sieve models, respectively. Policies were constructed using the 5 base characteristics and
the extended 23 characteristics. The bottom panel (Ad-hoc Coupons) shows profits for non-personalized coupon policies.
“Existing Pricing” sets Hellmann’s prices to realized prices, “Never Coupon” sets all coupons to $0, and “Always Coupon”
sets all coupons to $1.4.

The results indicate substantial potential of personalization for both new and known
consumers. For example, the coupon policy based on the Dirichlet HART model using the
extended characteristics results in 9 cents of additional profits per purchase for both new
and known consumers compared to Hellmann’s existing pricing. This increases profits by
40% and 26% for new and known consumers, respectively. If Hellmann’s were to imple-
ment the Dirichlet HART targeting policy across all annual purchases of 30oz mayonnaise
jars in the midwest-US market alone, this would result in an additional $1.35 million in
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expected profits.
The results also show that the HART and Dirichlet HART models improve over both

the linear hierarchical specification and the VC sieve model. For example, the best per-
forming model for new consumers is HART with the extended characteristics, improving
over the best linear specification by 4 cents (13%) and the best VC sieve model by 8.4
cents (33%). For known consumers, the best performing model is HART with base char-
acteristics, improving over the best linear specification by 2 cents (4%) and the best VC
sieve model by 8 cents (21%). Overall, the counterfactual profit estimates thus indi-
cate substantial marketing value of the proposed HART and Dirichlet HART models for
designing personalized couponing policies.

In addition, note that the HART and Dirichlet HART models are more suitable for
taking advantage of a richer set of household characteristics than the linear specification.
While HART and Dirichlet HART models largely benefit from the extended character-
istics, for example increasing profits by nearly 5 cents for new consumers when using
HART, the linear specification either does not benefit or is substantially worsened. For
known consumers, a linear model specification with extended characteristics results in a
9 cent reduction in profits compared to the linear specification with base characteristics,
and a 1 cent reduction compared to Hellmann’s existing pricing. This echoes the results
of previous sections on the poor performance of the linear specification with even moder-
ately many characteristics. HART and Dirichlet HART models thus provide a potentially
fruitful avenue for future research on the use of richer household characteristics in demand
models for targeting to both new and known consumers.

7 Conclusion

This paper introduces hierarchical additive regression trees (HART), a Bayesian machine
learning approach for personalization. HART addresses the challenge of making optimal
marketing decisions for both new consumers with limited purchase histories and known
consumers whose choices have been observed over time. By integrating the flexibility of
supervised machine learning with the inferential power of hierarchical Bayesian models,
HART flexibly leverages a potentially large number of observed consumer characteristics
to form granular initial preference predictions. As a consumer’s purchase history accu-
mulates, HART then optimally adapts to their specific preferences, providing a coherent
framework for personalization throughout the customer journey. I develop an efficient
Metropolis-within-Gibbs sampler that makes fully Bayesian inference practical, allowing
managers to make (Bayes) optimal decisions that account for uncertainty at every stage.

I illustrate the value of HART in two discrete choice applications. In a canonical credit
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card conjoint study, HART uncovers rich, nonlinear relationships between consumer de-
mographics and preferences that are missed by conventional linear models, leading to
potentially more effective targeted product design. In a CPG scanner data application,
HART substantially improves out-of-sample prediction for new consumers and generates
higher estimated profits in a personalized couponing exercise, particularly when leverag-
ing an extended set of consumer characteristics. These empirical results demonstrate the
practical benefits of the proposed approach for marketing decisions. In contrast to existing
hierarchical approaches that worsen under even moderately many household characteris-
tics, HART models also provide a potentially fruitful avenue for future research on the
use of richer household characteristics in demand models for targeting to both new and
known consumers.

This paper advances the development of hierarchical marketing models that flexibly
leverage observed characteristics, and several avenues for future research remain. The
empirical value of HART could be further explored across different modeling contexts,
such as in richer models of consumer search (Morozov, 2023), or in cold start problems
where the unit of analysis is not the consumer but, for example, a new product (Nee-
lamegham and Chintagunta, 1999). Wider application to more datasets, including those
from large-scale field experiments, would also be valuable for assessing the generalizability
of HART’s marketing value. Further, rich literatures on hierarchical models, Bayesian su-
pervised machine learning, and efficient sampling provide several opportunities to extend
HART. Of particular interest to tackling the cold start problem is the combination of
HART with outcome-augmented approaches as in Ainslie and Rossi (1998) and Padilla
and Ascarza (2021). Finally, the proposed Metropolis-within-Gibbs sampler could be fur-
ther accelerated by incorporating recent advances in parallelization and faster sampling
algorithms as in Pratola et al. (2014), He et al. (2019), and Bumbaca et al. (2020). Such
efficiency improvements could facilitate the application of HART in very large marketing
datasets, opening up further opportunities for flexible and fully Bayesian personalization.
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Appendices

A Default Priors

This appendix describes the default second-stage prior values for the hierarchical Bayesian
models. Section A.1 and A.2 describe the default prior values for the HART and Dirichlet
HART models. For convenience, Section A.3 provides the default prior values for the
linear hierarchical prior from bayesm (Rossi, 2023).

A.1 HART

The HART model’s priors are defined over the unconditional mean µ, the covariance
matrix Σ, and the sum-of-trees parameters. Default prior values are identical to those
discussed in Chipman et al. (2010), with the exception of the prior on the terminal leaf
coefficients (see Section 2.3).

• Unconditional Mean (µ): A normal prior is used for the D-dimensional vector
of unconditional means:

µ ∼ N (µ,A−1).

The default hyperparameter values are µ = 0 and A = 0.01 · I.

• Covariance Matrix (Σ): An inverse-Wishart prior is used for the covariance
matrix of unobserved heterogeneity:

Σ ∼ IW(ν,Ψ).

Default hyperparameter values are ν = D+3 degrees of freedom and a scale matrix
Ψ = ν · I.

• Sum-of-Trees Model: The prior for the representative unit is defined over the
parameters of D independent sum-of-trees models, each being a sum of H trees.

– Number of Trees (H): The default is H = 200.

– Tree Structure (Rdh): The prior on the tree structure favors shallow trees.
The probability of a node at depth q being non-terminal is:

α(1 + q)−β.
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Default values are α = 0.95 and β = 2. When a node is split, a splitting
variable is chosen uniformly from the available characteristics. The split point
is chosen uniformly over the variable’s range. For continuous variables, a grid
of 100 quantile-based cutpoints is used by default.

– Terminal Leaf Coefficients (Λdh): The coefficients λdhg in the terminal
leaves are given independent normal priors:

λdhg ∼ N (0, σ2
λ)

The prior variance σ2
λ is set via σλ = τ√

H
, with a default of τ = 1.

A.2 Dirichlet HART

The Dirichlet HART model augments the HART prior to induce sparsity in the depen-
dence on unit characteristics, following the approach of Linero (2018). This is achieved
by modifying the prior on the selection of splitting variables within the tree structure.

Instead of a uniform probability, the vector of selection probabilities τ = (τ (1), . . . , τ (K))
is given a sparse Dirichlet prior:

(τ (1), . . . , τ (K)) ∼ Dirichlet(ζ/K, . . . , ζ/K)

where K is the number of available unit characteristics. The parameter ζ controls the
concentration of the distribution and is itself given a hierarchical prior to be learned from
the data.28 In particular, a hyperprior is placed on a transformation of ζ:

ζ

ζ + ρ
∼ Beta(a, b)

This structure is governed by three key hyperparameters:

• a and b are the shape and scale parameters for the Beta prior. A default of a = 0.5
and b = 1 as proposed in Linero (2018) induces sparsity where few variables are
expected to have high selection probabilities. In contrast, setting a = b = 1 results
in a non-sparse prior similar to the uniform selection of the standard HART model.

• The hyperparameter ρ can be used to induce additional sparsity. Its default value
is the total number of characteristics, K. Reducing ρ below K encourages greater
sparsity.29

28Linero (2018) also discusses setting ζ to a pre-specified fixed value or setting it via cross-validation.
29See also Sparapani et al. (2021) for a discussion of the Dirichlet prior hyperparameters in an appli-

cation of BART to nonparametric regression.
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All other priors are identical to those in the HART model.

A.3 Linear hierarchical prior

For the conventional linear hierarchical model, the representative unit is defined as ∆(Zi) =
∆⊤(Zi − 1

n

∑n
i=1 Zi)+µ, where ∆ is a D×K matrix of coefficients and unit characteristics

are de-meaned for ease of interpretation (e.g., Rossi et al., 2009). Following Rossi (2023),
the priors for the coefficients ∆ are:

vec(∆) ∼ N (δ, A−1
δ .)

The default hyperparameter values are a mean of δ = 0 and a precision matrix of Aδ =
0.01 · I.

The default priors for the unconditional mean µ and the covariance matrix Σ are the
same as for the HART and Dirichlet HART models.
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B Application I: Credit Card Conjoint

This appendix provides supplementary details on the first empirical application of Section
5. Section B.1 outlines the conjoint survey. Section B.2 and B.3 provide additional
demand and counterfactual estimates, respectively. Section B.4 provides additional results
for the high-dimensional placebo exercise.

B.1 Conjoint survey of Allenby and Ginter (1995)

The details on the conjoint survey are taken from Allenby and Ginter (1995) and are
included here solely for the reader’s convenience.

• Interest rate: High (base), medium, low fixed, or medium variable.
• Rewards: Four reward programs (first as base), which consisted of annual fee waivers

or interest rebate reductions for specified levels of card usage and/or checking ac-
count balance.

• Annual fee: High (base), medium, or low.
• Bank: Bank A (base), Bank B, or Out-of-State.
• Cash rebate: low (base), medium, or high.
• Credit limit: low (base), or high.
• Grace period: short (base), or long.

The data of Allenby and Ginter (1995) includes the three respondent characteristics
age, income, and gender. The income and age characteristics are discretized in the original
data, the details of which are unknown. Figure 12 shows the empirical distribution of age
and income. Table 8 shows the empirical distribution of demographics.

Figure 12: Empirical Distribution of Age and Income

(a) Age (b) Income ($000)

Notes: The figure shows the empirical distribution of age (Panel (a)) and income (Panel (b)) in the conjoint
survey data of Allenby and Ginter (1995). The sample totals 946 respondents.
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Table 8: Distribution of Demographics

Women Men

Age Income ($000) Income ($000)

20 30 40 50 60 70 100 20 30 40 50 60 70 100

20 0 0 1 0 0 0 0 3 2 0 0 0 0 1
30 12 14 19 11 6 3 6 13 36 29 17 10 3 11
40 13 22 21 15 16 4 5 13 36 60 35 22 15 24
50 14 11 9 15 9 0 4 8 25 27 32 23 14 32
60 22 10 12 3 3 1 4 10 13 19 16 10 10 7
75 29 11 3 1 0 1 0 16 10 8 2 1 0 3

Notes: The table shows the joint empirical distribution of demographics in the conjoint survey
data of Allenby and Ginter (1995). Numbers indicate the number of respondents in each observed
segment. Segments 1 and 2 as used in Section 5 are highlighted in bold. The sample totals 946
respondents.

B.2 Demand estimates

Figure 13 shows the MCMC log likelihood traceplot for the linear hierarchical and HART
logit model. Figure 14 shows the MCMC traceplot for the individual part-worths for the
out-of-state bank attribute. All traceplots indicate convergence occurs after less than 500
iterations.

Figure 13: MCMC Traceplot of the Log Likelihood

Notes: The figure shows traceplots of the log likelihood for the
linear hierarchical logit model (in red) and HART logit model
(in blue).
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Figure 14: MCMC Traceplot of Individual Part-Worths for Out-of-State Bank

(a) Linear hierarchical prior (b) HART

Notes: The figure shows traceplots of the individual part-worths for the out-of-state bank attribute for the
linear hierarchical logit model (Panel (a)) and HART logit model (Panel (b)). Individual part-worths for each
model are evaluated for two consumers: respondent 146 (solid lines) and respondent 580 (darker dashed lines),
who are members of the consumer segments 1 and 2 considered in Section 5.

Tables 9 and 10 present estimates of the individual part-worths θi and expected part-
worths ∆(·) for all credit card attributes. Table 11 presents estimates of the covariance
matrix Σ for the linear hierarchical logit model (the HART covariance matrix is shown in
Table 2).
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Table 9: Individual Part-Worths Estimates

Respondent 146 Respondent 580

Linear HART Linear HART

Interest
Medium fixed 1.02 1.16 2.47 2.24

(1.15) (1.15) (1.42) (1.39)
Low fixed 2.73 2.63 5.12 4.36

(2.16) (2.29) (2.48) (2.36)
Medium variable 0.77 1.21 4.28 3.72

(2.41) (2.63) (2.44) (2.44)
Rewards

Rewards program 2 -0.91 -0.83 0.91 0.49
(0.87) (0.84) (1.13) (1.03)

Rewards program 3 -1.57 -1.24 0.31 0.18
(1.24) (1.26) (1.54) (1.46)

Rewards program 4 -0.59 0.19 -0.03 0.08
(1.53) (1.61) (1.80) (1.84)

Annual Fee
Medium 0.36 -0.04 2.05 2.62

(1.30) (1.42) (1.99) (1.99)
Low 0.89 0.50 3.59 4.37

(2.27) (2.42) (3.68) (3.71)
Bank

Bank B -1.73 -1.89 -0.74 -0.95
(1.24) (1.25) (1.48) (1.52)

Out-of-State -8.24 -8.61 -1.13 -1.50
(2.85) (2.83) (2.78) (2.85)

Rebate
Medium 1.09 1.18 -1.15 -1.45

(1.18) (1.24) (1.42) (1.54)
High 0.63 0.61 -2.78 -3.14

(2.26) (2.20) (2.62) (2.87)
Credit Limit

High -1.68 -1.43 -2.27 -2.05
(1.17) (1.18) (1.68) (1.54)

Grace Period
Long 1.16 1.59 0.55 0.19

(1.82) (1.92) (2.12) (2.36)

Notes: The table shows the posterior means of the individual part-worths
θi for the linear hierarchical logit model and HART logit model of two
respondents. Parentheses indicate posterior standard deviations. Respon-
dent 146 and respondent 580 are members of the consumer segments 1 and
2 as considered in Section 5, respectively.
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Table 10: Expected Part-Worths Estimates

Overall Age=75; Income=20;
Female

Age=50; Income=30;
Male

Linear HART Linear HART Linear HART
(1) (2) (3) (4) (5) (6)

Interest
Medium fixed 2.57 2.56 1.92 1.48 2.29 2.62

(0.39) (0.53) (0.28) (0.38) (0.16) (0.30)
Low fixed 5.01 4.98 4.08 3.17 4.45 5.10

(0.68) (0.94) (0.48) (0.65) (0.27) (0.56)
Medium variable 3.18 3.05 2.30 1.90 2.98 3.24

(0.78) (0.94) (0.57) (0.70) (0.29) (0.56)
Rewards

Rewards program 2 -0.04 -0.07 -0.05 -0.20 0.04 0.07
(0.23) (0.35) (0.24) (0.29) (0.14) (0.24)

Rewards program 3 -0.56 -0.60 -0.43 -0.68 -0.67 -0.12
(0.54) (0.59) (0.39) (0.40) (0.20) (0.33)

Rewards program 4 -0.53 -0.55 -0.51 -0.34 -0.69 -0.18
(0.60) (0.68) (0.48) (0.55) (0.28) (0.39)

Annual Fee
Medium 2.19 2.15 2.58 2.02 1.97 2.31

(0.38) (0.57) (0.32) (0.41) (0.18) (0.33)
Low 4.19 4.17 4.78 4.28 3.69 4.21

(0.70) (1.03) (0.52) (0.74) (0.30) (0.58)
Bank

Bank B -0.39 -0.46 -0.40 -0.83 -0.47 -0.32
(0.24) (0.43) (0.30) (0.40) (0.16) (0.31)

Out-of-State -3.78 -3.78 -4.40 -5.19 -3.96 -2.89
(0.68) (1.04) (0.85) (0.92) (0.40) (0.62)

Rebate
Medium 1.40 1.46 1.34 1.57 1.29 1.14

(0.24) (0.41) (0.30) (0.37) (0.16) (0.28)
High 2.41 2.48 1.71 1.97 1.96 1.71

(0.62) (0.85) (0.50) (0.62) (0.29) (0.50)
Credit Limit

High 1.15 1.16 1.16 1.42 1.05 1.41
(0.32) (0.60) (0.33) (0.46) (0.18) (0.37)

Grace Period
Long 3.51 3.52 2.48 2.74 2.96 2.88

(0.67) (0.69) (0.36) (0.51) (0.23) (0.39)

Notes: The table shows the posterior means of the expected part-worths ∆(·) for the linear hierarchical
logit model and HART logit model of two respondents. Parentheses indicate posterior standard devi-
ations. Columns (1)-(2) show overall (or: unconditional) expected part-worths. Columns (3)-(4) and
columns (5)-(6) show expected part-worths for two consumer segments, older women with low income
and middle-aged men with moderate income, respectively. Odd columns correspond to results for the
linear hierarchical prior logit model. Even columns correspond to the HART logit model.

54



Table 11: Linear Hierarchical Logit Model Covariance Matrix Estimates

Low fixed interest 9.22 0.26 0.20 0.30 0.17 0.24
(1.84)

Low annual fee 3.18 14.71 0.56 0.47 0.42 0.61
(1.71) (2.05)

Out-of-state bank 2.40 8.62 16.06 0.36 0.34 0.19
(1.20) (1.81) (2.52)

High cash rebate 2.79 5.37 4.29 8.70 0.42 0.68
(1.35) (1.66) (1.46) (1.68)

High credit limit 1.29 4.11 3.51 3.14 6.47 0.43
(0.70) (0.81) (1.17) (0.75) (0.71)

Long grace period 1.74 5.40 1.75 4.64 2.51 5.28
(0.94) (1.45) (1.13) (1.25) (0.65) (1.03)

Notes: The table shows posterior means of the lower-triangular covariance matrix Σ
for selected attribute levels. Posterior standard deviations are in parentheses. The
upper triangular matrix shows correlations.

Figure 15 shows the posterior mean expected part-worths ∆(·) for the out-of-state
bank, low interest rate, and low annual fee attributes. The results indicate that the
HART logit model (in blue) estimates richer heterogeneity in the expected part-worths
for the out-of-state bank attribute.
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Figure 15: Posterior Mean Expected Part-Worths for all Respondents

(a) Out-of-state bank

(b) Low interest rate (c) Low annual fee

Notes: The figure shows the empirical distribution of posterior mean expected part-worths ∆(·)
for the out-of-state bank (Panel (a)), low interest rate (Panel (b)), and low annual fee (Panel (c))
attributes across all 946 respondents. Results based on the linear hierarchical logit model are in
red, results based on the HART logit model are in blue.
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B.3 Counterfactual estimates

Figure 16 shows the empirical distribution of posterior mean counterfactual shares of out-
of-state credit card offerings against a baseline in-state credit card across all 70 consumer
segments observed in the data. The results indicate that the HART logit model (in
blue) estimates richer heterogeneity in the counterfactual shares for the out-of-state bank
attribute.

Figure 16: Posterior Mean of Counterfactual Shares for all 70 Segments

(a) Out-of-state

(b) Out-of-state & low interest rate (c) Out-of-state & low annual fee

Notes: The figure shows the empirical distribution of posterior mean counterfactual shares of out-of-state credit
card offerings against a baseline in-state credit card across all 70 consumer segments observed in the data.
Panel (a) shows the counterfactual shares of an out-of-state credit card, Panel (b) shows the counterfactual
shares of an out-of-state credit card with a low interest rate, and Panel (c) shows the counterfactual shares of
an out-of-state credit card with a low annual fee. Results based on the linear hierarchical logit model are in
red, results based on the HART logit model are in blue.

Figures 17 and 18 show the posterior distribution of counterfactual shares of an out-
of-state credit card and an out-of-state credit card with a low annual fee for the two
considered consumer segments. As in Section 5.3, the counterfactual results based on the
linear approach (Panel (a)) indicate little gain to targeted advertising or other personal-
ized approaches. In contrast, the HART logit posteriors (Panel (b)) outline the bank’s
opportunity to differentiate between the two segments.
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Figure 17: Counterfactual Shares for an Out-of-State Credit Card

(a) Linear hierarchical prior (b) HART

Notes: The figure shows the posterior distribution of expected counterfactual shares of an out-of-state credit
card against a baseline in-state credit card. Panel (a) and (b) show results for the linear hierarchical prior and
the HART prior, respectively. Expected counterfactual shares for each model are evaluated for two consumer
segments: older women with low income (solid) and middle-aged men with moderate income (dark shaded).

Figure 18: Counterfactual Shares for an Out-of-State Credit Card with a Low Annual Fee

(a) Linear hierarchical prior (b) HART

Notes: The figure shows the posterior distribution of expected counterfactual shares of an out-of-state credit
card with low annual fee against a baseline in-state credit card.

B.4 Robustness to high-dimensional characteristics

Figure 19 shows the MCMC log likelihood traceplots for the conventional linear, HART,
and Dirichlet HART logit models when respondent characteristics are extended with
100 standard normal (irrelevant) characteristics. The results indicate convergence of the
HART and Dirichlet HART logit models within less than 500 iterations. In contrast, the
linear hierarchical logit model does not appear to converge within the 10,000 iterations.
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Figure 19: MCMC Log Likelihood Traceplot with 100 Irrelevant Characteristics

Notes: The figure shows traceplots of the log likelihood for the
linear hierarchical logit model (in red), the HART logit model
(in blue), and the Dirichlet HART logit model (in green).
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C Application II: Personalized Mayonnaise Coupons

This appendix provides supplementary details on the second empirical application of
Section 6. Section C.1 provides summary statistics for the NielsenIQ household panel
scanner data. Section C.2 provides MCMC diagnostics for the hierarchical logit models.
Section C.3 provides additional demand estimates. Section C.4 details DML nuisance
estimation for inference about counterfactual profits.

C.1 Summary Statistics

Table 12 summarizes the household characteristics of three considered subsamples of the
NielsenIQ household panel scanner data. There are no substantial differences in the
household characteristics of the three subsamples.

Table 12: Summary Statistics

Estimation Sample Policy Sample
New Consumers

Policy Sample
Known Consumers

Mean SD Mean SD Mean SD

Base Characteristics
Log income 10.64 0.68 10.62 0.69 10.68 0.66
Family size 0.82 0.50 0.82 0.51 0.77 0.48
Employed 0.83 0.38 0.88 0.32 0.82 0.39
Retired 0.33 0.47 0.21 0.41 0.34 0.47
Single mother 0.04 0.19 0.04 0.20 0.03 0.18

Extended Characteristics
Age (female) 53.47 16.82 47.02 18.16 53.75 17.02
Age (male) 46.16 24.71 40.51 24.23 47.05 24.48
High school 0.69 0.46 0.67 0.47 0.70 0.46
College 0.37 0.48 0.37 0.48 0.35 0.48
White collar 0.80 0.40 0.79 0.40 0.78 0.41
Widowed 0.07 0.25 0.05 0.22 0.07 0.25
Divorced 0.13 0.33 0.14 0.34 0.13 0.33
Single 0.09 0.29 0.13 0.34 0.09 0.28
Female head 0.05 0.22 0.07 0.26 0.06 0.23
Male head 0.19 0.39 0.22 0.41 0.19 0.39
Two family house 0.02 0.15 0.02 0.14 0.02 0.14
Three family house 0.07 0.26 0.10 0.30 0.06 0.25
Mobile home 0.03 0.18 0.03 0.18 0.04 0.20
Cable TV 0.40 0.49 0.39 0.49 0.39 0.49
Pay cable TV 0.24 0.43 0.28 0.45 0.23 0.42
Microwave 0.99 0.08 0.99 0.12 0.99 0.08
Garbage disposal 0.09 0.29 0.06 0.24 0.10 0.29
Dishwasher 0.72 0.45 0.71 0.46 0.71 0.45

Notes: The table shows summary statistics for the NielsenIQ household panel scanner data. “Estimation
Sample” refers to the 1,095 households with at least two mayonnaise purchases in 2010-2011. “Policy Sample”
refers to the 1,891 households with at least one mayonnaise purchase in 2012-2013. “Known Consumers” refers
to the 513 households that are in both the estimation and policy samples. “New Consumers” refers to the 1,378
households that are in the policy sample but not the estimation sample.
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C.2 MCMC Diagnostics

Figure 20 shows the MCMC log likelihood traceplots for the conventional linear, HART,
and Dirichlet HART logit models, using both the base 5 characteristics and the extended
23 characteristics. Figure 21 shows corresponding traceplots of the individual price coef-
ficients. For ease of exposition, each plot considers two consumers with visually distinct
posterior distribution. Figure 22 shows corresponding traceplots of the expected price
coefficients, evaluated at the consumer characteristics of the two consumers considered in
Figure 21. All traceplots indicate convergence of all models within less than 500 iterations.

Figure 20: MCMC Traceplot of the Log Likelihood

(a) Linear (b) HART

Notes: The figure shows traceplots of the log likelihood for the linear hierarchical logit model (in red), the
HART logit model (in blue), and the Dirichlet HART logit model (in green).
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Figure 21: MCMC Traceplot of Individual Price Coefficients

(a) Linear hierarchical prior
5 characteristics

(b) Linear hierarchical prior
23 characteristics

(c) HART
5 characteristics

(d) HART
23 characteristics

(e) Dirichlet HART
5 characteristics

(f) Dirichlet HART
23 characteristics

Notes: The figure shows traceplots of the individual price coefficients for the linear hierarchical logit model
(Panel (a) and (b)), the HART logit model (Panel (c) and (d)), and the Dirichlet HART logit model (Panel (e)
and (f)). Traceplots on the left-hand side (Panels (a), (c), and (e)) show results for the base 5 characteristics.
Traceplots on the right-hand side (Panels (b), (d), and (f)) show results for the extended 23 characteristics.
Individual price coefficients for each model are evaluated for two consumers in the 2010-2011 estimation sample
with visually distinct posterior distribution.
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Figure 22: MCMC Traceplot of Expected Price Coefficients

(a) Linear hierarchical prior
5 characteristics

(b) Linear hierarchical prior
23 characteristics

(c) HART
5 characteristics

(d) HART
23 characteristics

(e) Dirichlet HART
5 characteristics

(f) Dirichlet HART
23 characteristics

Notes: The figure shows traceplots of the expected price coefficients for the linear hierarchical logit model
(Panel (a) and (b)), the HART logit model (Panel (c) and (d)), and the Dirichlet HART logit model (Panel (e)
and (f)). Traceplots on the left-hand side (Panels (a), (c), and (e)) show results for the base 5 characteristics.
Traceplots on the right-hand side (Panels (b), (d), and (f)) show results for the extended 23 characteristics.
Expected price coefficients for each model are evaluated at the characteristics of the two consumers considered
in Figure 21.
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C.3 Demand Estimates

Table 13 reports the unconditional mean of the estimated coefficients for all models.
The results indicate similar overall demand patterns, including a stark preference in the
midwest market for Kraft mayonnaise compared to both Hellmann’s and private label.
Notably, when extending the base characteristics to the 23 extended characteristics, the
posterior uncertainty in the coefficients of the linear specification increases substantially.
In contrast, posterior uncertainty about the coefficients of the HART and Dirichlet HART
logit model remains stable.

Table 13: Expected Coefficient Estimates

5 Characteristics 23 Characteristics

Linear HART Dirichlet
HART

VC
Sieve Linear HART Dirichlet

HART
VC

Sieve
(1) (2) (3) (4) (5) (6) (7) (8)

Hellmann’s 6.20 5.60 6.43 2.79 5.37 4.71 5.19 3.75
(1.67) (1.05) (1.01) (0.32) (2.80) (0.84) (0.98) (0.31)

Kraft 8.92 8.28 9.20 3.72 8.65 7.42 7.89 4.86
(1.41) (1.03) (0.91) (0.33) (2.86) (0.88) (1.03) (0.30)

Price -1.62 -1.54 -1.68 -0.76 -1.70 -1.40 -1.44 -0.98
(0.49) (0.48) (0.43) (0.10) (1.34) (0.56) (0.52) (0.13)

Feature 0.99 0.56 0.51 0.25 0.62 0.67 0.55 0.06
(1.77) (0.64) (0.54) (0.19) (2.94) (0.54) (0.71) (0.22)

Display 0.23 -0.02 -0.42 0.17 0.42 -0.24 -0.33 -0.03
(0.72) (0.54) (0.51) (0.18) (2.21) (0.64) (0.61) (0.20)

Notes: The table shows coefficient estimates for brand, price, and marketing mix effects. The left and right pan-
els correspond to results using the base 5 and the extended 23 consumer characteristics, respectively. Columns
(1)-(3) and (5)-(6) show posterior means of the hierarchical Bayesian models with posterior standard deviations
in parentheses. Columns (4) and (8) show double/debiased machine learning point estimates and standard
errors based on orthogonal scores of Farrell et al. (2025). “Hellmann’s” and “Kraft” denote the corresponding
brand intercepts. The private label brand intercept (not shown here) is normalized to zero throughout. “Price”,
“Feature”, and “Display” denote the own-effect coefficients of the marketing mix variables price, and whether
the corresponding brand was featured or in-store display.

Table 14 presents the posterior estimates of the covariance matrix Σ for the linear and
HART logit models with the base characteristics (the covariance estimates with extended
characteristics are in Table 5 in the main text). Overall, the posterior mean square
deviation of a household’s preferences, computed as the trace of the posterior covariance
matrix, is -9%(=22.46

24.66 − 1) lower in the HART model than in the linear specification.
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Table 14: Posterior Covariance Estimates (5 Characteristics)

Linear BART

Hellmann’s 6.17 -0.21 0.41 -0.19 -0.04 5.43 -0.28 0.31 -0.19 0.13
(1.07) (1.72)

Kraft -1.49 12.28 0.44 0.60 -0.14 -1.94 11.21 0.39 0.49 -0.35
(2.05) (3.94) (1.41) (2.96)

Price 1.59 2.37 2.48 0.32 -0.05 1.09 1.96 2.38 0.34 -0.21
(1.03) (0.78) (0.59) (0.95) (0.84) (0.55)

Feature -0.61 3.34 0.83 2.37 -0.22 -0.70 2.29 0.80 2.10 -0.31
(1.23) (1.70) (0.67) (1.12) (0.97) (1.59) (0.59) (0.73)

Display -0.13 -0.67 -0.08 -0.38 1.36 0.37 -1.42 -0.39 -0.54 1.34
(0.71) (1.29) (0.45) (0.34) (0.64) (0.65) (1.25) (0.48) (0.44) (0.65)

Notes: The table shows posterior means of the lower-triangular covariance matrix Σ for linear hierarchical prior and
HART logit model with 5 characteristics, respectively. Posterior standard deviations are in parentheses. The upper
triangular matrices show correlations.

C.4 DML Estimates

There are six nuisance functions arising in the estimation of counterfactual profits in
Section 6.3: the conditional expectation functions of profit given controls at each coupon
level (0, 0.4, 1.4), and the conditional probability of observing each coupon level in the
sample. Following suggestions in Ahrens et al. (2025b), I estimate these nuisance functions
by averaging over several machine learners via “short-stacking”. This helps alleviate the
problem of choosing a single machine learner.

I consider nine machine learners: ordinary least squares (OLS), lasso and ridge re-
gression with cross-validated penalty parameters, three random forest estimators with
minimum node size of 100 (high regularization), 10 (medium regularization), and 1 (low
regularization), and three gradient tree boosting estimators with 500 boosting rounds
and max tree depths of 1 (high regularization), 3 (medium regularization), and 5 (low
regularization).30

Table 15 reports the short-stacking weights corresponding to each of the nine learners
and target nuisance function along with out-of-sample R-squared of the short-stacked
estimator. The results show that the two machine learners that are assigned the most
model average weight are cross-validated lasso (CV Lasso) and the random forest with a
minimum node size of 100 (Random Forest high regularization).

30Lasso and ridge regression are implemented using the glmnet package, random forests are imple-
mented using the ranger package, and gradient tree boosting is implemented using the xgboost package.
Hyperparameters are set to the respective package defaults unless otherwise specified.
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Table 15: Short-Stacking Weights

E[Y |price, X] P(price|X)

Price level: $2.9 $3.9 $4.3 $2.9 $3.9 $4.3

Linear
OLS 0.00 0.03 0.00 0.02 0.00 0.00
CV-Lasso 0.00 0.94 0.81 0.00 0.00 0.00
CV-Ridge 0.01 0.00 0.00 0.00 0.00 0.00

Random Forest
High regularization 0.83 0.00 0.00 1.02 1.07 0.99
Medium regularization 0.00 0.00 0.00 0.00 0.00 0.00
Low regularization 0.00 0.00 0.07 0.00 0.00 0.00

Gradient Tree Boosting
High regularization 0.00 0.00 0.00 0.00 0.00 0.00
Medium regularization 0.16 0.00 0.03 0.00 0.00 0.05
Low regularization 0.00 0.00 0.06 0.00 0.00 0.00

R2 0.03 0.01 0.04 0.08 0.08 0.16

Notes: The table shows the short-stacking weights corresponding to each of the nine
learners and target nuisance function along with out-of-sample R-squared of the short-
stacked estimator. Short-stacking weights are restricted to be non-negative during
estimation.
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D Profit Estimation in Observational Data

This section describes and characterizes the counterfactual profit estimator applied in
Section 6.3. Section D.1 describes the target parameter, Section D.2 states sufficient iden-
tification assumptions, and Section D.3 constructs the double/debiased machine learning
(DML) estimator.

The discussion of counterfactual profit estimation here is partially based on ongoing
work with Andrew Bai and Sanjog Misra.

D.1 Setup

Consider a sample of i ∈ {1, . . . , n} consumers. For each consumer, the manager observes
Wi ≡ (Yi, pi, Xi, Zi), where Yi is the purchase outcome of the focal product (e.g., Hell-
mann’s) equal to one if they purchased and zero otherwise, pi is the price of the focal
product, Xi is a vector of market environment variables such as the time and place of
their purchase, and Zi is a vector of time-invariant consumer characteristics. Throughout,
I consider the conventional cross-sectional setting with independent consumers. Inference
generalizes naturally to clustered data.31

The manager is interested in estimating the expected profit value Πγ
0 associated with

a given personalized coupon policy γ that maps consumer characteristics Zi to a finite set
of potential coupon levels—i.e., γ : support(Zi) → Γ ≡ {γ1, . . . , γK}. In particular,

Πγ
0 ≡ E [Yi(γi)(price1 − γi −mc1)] , (14)

where Yi(·) denotes potential purchasing outcomes for the focal product at different
coupon levels, γi ≡ γ(Zi) is the assigned coupon level based on consumer i’s charac-
teristics Zi, price1 denotes the constant base price of the focal product, and mc1 denotes
the corresponding constant marginal cost.

Expected counterfactual profits as in (14) are frequently considered in the personal-
ization and targeting literature. For example, Rossi et al. (1996) consider maximizing
counterfactual profits via targeted couponing. Smith et al. (2023) and Section 6.3 in
this paper take a similar approach to targeting coupons for Hellmann’s mayonnaise. The
difference between (14) and the profits maximized in the abovementioned papers is that
the counterfactuals Yi(·) are not explicitly specified as a parametric demand model. For
example, I leverage the choice probabilities of the proposed HART and Dirichlet HART
as a parametric model for the choice counterfactuals but no such model is imposed on
(14).

31For an illustration of DML with one-way clustered data, see, e.g., Ahrens et al. (2025a).
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Not specifying a parametric demand model for defining counterfactual profits allows
evaluation of policies constructed under different demand models without giving any pol-
icy an a priori advantage. Indeed, Equation (14) is agnostic about how policies γ are
constructed. This motivates recent applications of nonparametric counterfactual policy
evaluation in marketing (e.g., Dudik et al., 2011; Simester et al., 2020a; Rafieian and
Yoganarasimhan, 2023; Smith et al., 2023; Hitsch et al., 2024).

A fundamental challenge in counterfactual profit evaluation is that the manager does
not observe the potential outcomes Yi(·) and instead sees only the realized outcomes Yi.
Πγ

0 is thus not identified without further assumptions that relate the realized outcomes
to the potential outcomes.

D.2 Identification under selection on observables

Identification of counterfactual profits is simplified by rewriting (14) as

Πγ
0 =

∑
γ̃∈Γ

E [Yi(γ̃)1{γ̃ = γi}] (price1 − mc1 − γ̃). (15)

This shows that identification of Πγ
0 can be achieved through identification of the weighted

average potential outcomes (wAPO) E [Yi(γ̃)1{γ̃ = γi}] at each coupon value γ̃ ∈ Γ, where
the weights 1{γ̃ = γi} indicate whether coupon value γ̃ matches the policy assignment
γi for consumer i. In particular, scaling these wAPOs by the marginal profit constants
(price1 − mc1 − γ̃) yields Πγ

0 .
A growing literature in marketing leverages (15) in combination with randomization-

by-action experimental designs (e.g., Ascarza, 2018; Simester et al., 2020a; Yoganarasimhan
et al., 2023; Hitsch et al., 2024). These approaches use random assignment of treatment
actions γ̃ to identify the wAPOs. Here, in the absence of experimental data, I instead
follow the approach by Smith et al. (2023) and consider identification under a selection
on observables assumption.

In particular, Assumptions D.1-D.2 are sufficient for identification of E [Yi(γ̃)] for all
coupon values γ̃ ∈ Γ.

Assumption D.1 states that potential outcomes are independent of prices encountered
by consumers, conditional on the encountered market environment and consumer charac-
teristics. Importantly, even if firms are not personalizing their prices, encountered prices
may still be correlated with potential outcomes due to self-selection. I.e., different con-
sumers exhibit different shopping behavior and may thus be exposed to different prices.

Assumption D.1 (Conditional Independence of Prices; CIP). Yi(·) ⊥⊥ pi |Zi, Xi, ∀i ∈ [n].

Smith et al. (2023) consider an analogous selection on observables assumption. In
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their application, however, only the identity of the retail chain is controlled for. In Section
6.3, I consider a more general approach where the controls include extended consumer
characteristics, as well as month, year, and state fixed effects.

Assumption D.2 requires common support of prices across consumer and market char-
acteristics. This restricts the nonparametric policy evaluation approach to counterfactual
profits within the support of observed prices. Consequently, I only consider the most
frequently observed coupon values in Section 6.3.

Assumption D.2 (Common Support; CS). P(pi = price1 − γ̃ | Zi, Xi) > 0 w.p. 1,
∀γ̃ ∈ Γ, i ∈ [n].

Given Assumptions D.1-D.2, standard identification arguments show identification of
expected counterfactual profits (14). For completeness, this result is stated and proven
in Proposition D.3.

Proposition D.3. Suppose Assumptions D.1-D.2 hold. Then, under regularity assump-
tions, we have for any policy γ : support(Zi) → Γ that

Πγ
0 =

∑
γ̃∈Γ

E [E [Yi|pi = price1 − γ̃, Xi, Zi]1{γ̃ = γi}] (price1 − mc1 − γ̃), (16)

Proof. Take an arbitrary γ̃ ∈ Γ. We have,

E [E [Yi|pi = price1 − γ̃, Xi, Zi]1{γ̃ = γi}] =E [E [Yi(γ̃)|pi = price1 − γ̃, Xi, Zi]1{γ̃ = γi}]
[1]=E [E [Yi(γ̃)1{γ̃ = γi}|Xi, Zi]]
[2]=E [Yi(γ̃)1{γ̃ = γi}] ,

(17)

where [1] follows from Assumption D.1 and [2] follows from the law of iterated expectations.
Assumption D.2 implies that the left-hand side of (17) is well-defined. Since the choice of
γ̃ was arbitrary, all wAPOs E [Yi(γ̃)1{γ̃ = γi}] are identified. Multiplying with the known
marginal profit constants (price1 − mc1 − γ̃) and summing over all γ̃ ∈ Γ then implies
identification of Πγ

0 .

D.3 Estimation and inference

While Proposition D.3 provides a clear identification strategy, estimation presents statis-
tical challenges. The conditional expectation functions E [Yi|pi = price1 − γ̃, Xi, Zi] are
high-dimensional objects unless strong functional form assumptions are imposed on the
data generating process. Simply replacing these expectations with sample analogues in
(16) leads to biased estimates and invalidates standard inference procedures (e.g., Ahrens
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et al., 2025a). To address these issues, I construct a double/debiased machine learning
(DML; Chernozhukov et al., 2018) estimator, which enables valid inference despite the
presence of high-dimensional nuisance parameters.

There are two main components to every DML estimator: 1) a Neyman orthogonal
score, and 2) cross-fitting. Neyman orthogonal scores for wAPOs are readily available
in the literature. See, for example Appendix A.1.1 of Ahrens et al. (2025a). Adapting
the notation to the present setting, the Neyman orthogonal score function for the wAPO
ωγ̃

0 ≡ E [Yi(γ̃)1{γ̃ = γi}] is given by

ψγ̃(Wi;ωγ̃, η) + ωγ̃ =1{pi = price1 − γ̃}Yi

m(γ̃, Xi, Zi)
1{γ̃ = γi}

− g(γ̃, Xi, Zi)1{γ̃ = γi}
m(γ̃, Xi, Zi)

(1{pi = price1 − γ̃} −m(γ̃, Xi, Zi)) ,

(18)

where the nuisance parameter η ≡ (m, g) takes true values η0 at

m0(γ̃, Xi, Zi) ≡ P (pi = price1 − γ̃|Xi, Zi) ,

g0(γ̃, Xi, Zi) ≡ E[Yi|pi = price1 − γ̃, Xi, Zi].

The score in (18) combines the inverse propensity weight score with the regression score.
For this reason, it is also referred to as the doubly robust score or augmented inverse
propensity weighted score (e.g., Dudik et al., 2011; Rafieian and Yoganarasimhan, 2023).

To obtain the Neyman orthogonal score for counterfactual profits, note that Equation
(15) implies that Πγ̃

0 is a linear function of ωγ̃
0 . It thus follows that a Neyman orthogonal

score for the counterfactual profit can be constructed as

ψγ(Wi; Πγ, η) =
∑
γ̃∈Γ

ψγ̃(Wi;ωγ̃, η) (price1 − mc1 − γ̃) , (19)

where the nuisance parameters η are the same as in (18).
A DML estimator Π̂γ for Πγ

0 can be constructed as the solution to the cross-fitted
sample analog of (19):

Π̂γ : 1
n

L∑
l=1

∑
i∈Il

ψγ(Wi; Π̂γ, η̂−l) = 0, (20)

where {Il}L
l=1 is a random partition of the sample of consumers {1, . . . , n} into L sub-

samples of approximately equal size, and η̂−l denotes a cross-fitted nuisance parameter
estimator computed using only consumers not in sub-sample l.
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Chernozhukov et al. (2018) derive conditions for valid inference about Πγ
0 with the

DML estimator Π̂γ. The central requirement, beyond standard sampling and regularity
conditions, is that the nuisance parameter estimator η̂ satisfies moderate convergence rate
conditions. A crude sufficient convergence rate for η is that nuisance functions have n−1/4

ℓ2 convergence rates; see, e.g., discussion on p. C25 of Chernozhukov et al. (2018). A large
and active literature characterizes settings in which variants of modern machine learning
methods achieve these sufficient convergence rates, thus motivating their use for nuisance
estimation. This includes, for example, versions of lasso, random forests, and neural
networks (see, e.g., Belloni et al., 2012; Athey et al., 2019; Farrell et al., 2021). Because
the choice of nuisance estimator is both difficult and potentially consequential in practice,
Ahrens et al. (2025b) propose to average over several machine learners via “short-stacking”
(see Appendix C.4 for the short-stacking estimator in the coupon application).

Assuming that estimators of the nuisance parameters converge at appropriate rates,
Theorems 3.1 and 3.2 in Chernozhukov et al. (2018) imply that the sampling distribution
of Π̂γ is well approximated by a normal distribution as the number of consumers n grows
large—i.e.,

√
nΣ̂−1/2

γ (Π̂γ − Πγ
0) d→ N (0, 1),

where

Σ̂γ ≡ 1
n

L∑
l=1

∑
i∈Il

ψγ(Wi; Π̂γ, η̂−l)2.

Appropriate DML standard errors for Π̂γ are then given by the square root of the diagonal
values of Σ̂γ/n. I report these standard errors for counterfactual profit evaluation in Table
7 in Section 6.3.
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