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Abstract

This note studies robustness properties of (non)linear control function estimands such

as (mixed) Logistic or Poisson pseudo maximum likelihood estimands. I show that un-

der misspecification, commonly-applied estimands are not informative about the sign

of the true partial effects. For example, (mixed) logistic regression estimands poten-

tially imply positive partial effects even if all true partial effects are negative. I provide

sufficient conditions to admit valid conclusions about the sign of partial effects. For

a large class of estimands, including common pseudo maximum likelihood estimands

based on natural exponential family distributions, nonparametrically conditioning on

the control function is sufficient for sign preservation.
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1 Introduction
Empirical analyses frequently place structural assumptions on unknown relationships

between observed and unobserved variables to ease estimation. Many such convenience as-

sumptions are seldom motivated by domain knowledge or economic theory. This note studies

the robustness of conclusions about relationships between observed variables when these con-

venience assumptions are incorrect. This is motivated by the fact that commonly considered

convenience assumptions can result in incorrect conclusions about even the direction of as-

sociation between outcomes and variables of interest.

As a simple example, consider consumers choosing between a single good (j = 1) and an

outside option (j = 0), and suppose the researcher is interested in how a choice feature D1

impacts these choices. Letting Wj ≡ (Dj, V
⊤

j )⊤ denote the observed features of choice j, it

is convenient to model the consumer’s choice as

Y = argmax
j∈{0,1}

W⊤
j θ + Uj, (1)

where Wj ⊥⊥ Uj
iid∼ T1EV. When θ is a fixed parameter and the outside option is nor-

malized to W0 = 0, (1) implies familiar Logit conditional choice probabilities (CCPs)

mθ(W ) ≡ exp(W⊤
j θ)/(1 + exp(W⊤

j θ)) that allow for straightforward estimation. If the mod-

eling assumptions are correct so that the true CCPs are indeed given by mθ, then standard

maximum likelihood theory implies that the Logit maximum likelihood estimator (MLE) is

consistent for θ. As a consequence, the researcher’s conclusions about the partial effects of D1

on Y based on the Logit MLE are consistent as well. But what if the modeling assumptions

are incorrect?

Even if the linear index structure of (1) is correct, it is possible to find a distribution for

the latent utility shocks U (mean-zero and independent of W ) such that the Logit pseudo

MLE implies partial effects of D on Y that are of the opposite sign as the true partial

effects. Example 1 provides a simple numerical example of such a distribution. Hence, even
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with infinite data and no omitted variables, the researcher may incorrectly judge whether D

increases or decreases choice probabilities.

Example 1. Consider (Y,D, V ⊤, U) with distribution P where

Pr(D = 0, V2 = 0, V3 = 0) = 0.01, Pr(D = 1, V2 = 0, V3 = 0) = 0.36,

Pr(D = 0, V2 = 1, V3 = 0) = 0.01, Pr(D = 1, V2 = 1, V3 = 0) = 0.18,

Pr(D = 0, V2 = 0, V3 = 1) = 0.01, Pr(D = 1, V2 = 0, V3 = 1) = 0.18,

Pr(D = 0, V2 = 1, V3 = 1) = 0.24, Pr(D = 1, V2 = 1, V3 = 1) = 0.01,

and U ⊥⊥ (D, V ) with marginal distribution

Pr(U = −9.5) = 0.2, Pr(U = 1) = 0.05, Pr(U = 2) = 0.7, Pr(U = 9) = 0.05.

Finally, the binary outcome is determined via

Y = 1{−5D + 5V2 + 5V3 − 2 + U ≥ 0}.

Clearly, partial effects with respect to D are negative in this example. However, the Logit

pseudo MLE implies a slope-coefficient for D that converges to approximately +2 so that

model-implied partial effects with respect to D are positive.

After defining the framework formally in Section 2, I show in Section 3 that Example

1 is not a special case. For a large class of estimands, including (mixed) Logit, Normal, or

Poisson pseudo maximum likelihood estimands (PMLE), it is generally not possible to infer

the sign of the true partial effects from the sign of the model-implied partial effects. The

result highlights potentially grave negative consequences of convenience assumptions and

motivates a need for estimands that are more robust to misspecification.

Section 4 defines two robustness criteria: Weak and strong sign preservation. Heuristi-

cally, a non-sign preserving estimand can imply partial effects that are of the opposite sign

as all true partial effects. A sign preserving estimand guarantees against such drastically
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incorrect conclusions. While sign preservation is not sufficient to judge the quality of quan-

titative conclusions about partial effects or counterfactuals, it is difficult to motivate the use

of estimands that may lead to even wrong qualitative conclusions. Indeed, robustness prop-

erties of linear estimands analogous to sign preservation — including the “weak causality”

property of Blandhol et al. (2022) — are often viewed as minimal robustness properties (see

also Bugni et al., 2023; Sävje, 2024; Leung, 2024).

Section 5 then presents simple sufficient conditions for sign preservation. The presented

conditions are satisfied by a large class of commonly used estimands, including versions

of Gaussian, Poisson, and Logit PMLEs. Indeed, PMLEs based on the class of natural

exponential family distributions are shown to have appealing robustness properties under

misspecification. This has potentially surprising implications for discrete choice estimation:

The Logit PMLEs discussed in this note are sign preserving and thus guaranteed not to

result in drastically wrong qualitative conclusions about the direction of partial effects. This

guarantee holds even if the true partial effects are generated by a mixed Logit model regard-

less of the true mixing distribution. In contrast, there are no known results that guarantee

similarly robust conclusions on the sign of partial effects based on a mixed Logit PMLE if,

for example, the distribution of random coefficients that the researcher considers differs from

the true mixing distribution.1

Finally, Section 6 relates sign preservation to causal inference using control functions.

In particular, I consider the causal model Y = g(D,U) where g is a (potentially unknown)

structural function and U are all other (at least partially unobserved) determinants of Y

other than D. Following Imbens and Newey (2009), a control function is then simply any

(observed or identified) random vector V such that D ⊥⊥ U |V . Examples of control functions

1This result does not contradict the influential universal approximation properties of mixed Logit models

of McFadden and Train (2000) and further developed in Lu and Saito (2022) and Chang et al. (2022), since

these previously-established results rely crucially on availability of a nonparametric mixing distribution. In

contrast, I focus on parametric mixing distributions as conventionally applied in practice.
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V used in practice include observed controls or residuals from a first stage regression of D

on instruments.2 In this control function setup, sign preservation of an estimand is shown to

be equivalent to correct conclusions about the sign of conditional causal effects of D on Y .

Throughout the main text, I focus on a simple setting with a scalar-valued outcome Y , a

scalar-valued variable of interest D, and a vector of covariates V . Their joint distribution is

P in a class of possible distributions P . For all P ∈ P , I assume that Y,D, and V have finite

second moments, that the support of Y given by Y ⊂ [y, y] with either y or y potentially

infinite, the support of D given by D ≡ {d1, . . . , dJ} with J ∈ N,3 and the support of V

denoted by V are fixed, and that the support of (D, V ) is D × V . These assumptions greatly

simplify the exposition while still allowing for discussion of the main insights. In Appendix

A, I extend the result of the main text to vector-valued Y and D to also accommodate

analysis of, for example, multinomial Logit PMLEs.

Literature. This note draws from and contributes to several strands of literature. A large

literature in econometrics studies statistical properties of estimators for so-called pseudo-

true parameters that maximize a population-level objective function (e.g., White, 1982).

Standard maximum likelihood theory shows, for example, that under mild conditions, the

MLE converges to the parameter that minimizes the Kullback-Leibler distance between the

true likelihood and the likelihood the researcher considers. As highlighted by Andrews et al.

(2024), however, these “pseudo-true” parameters are not in general policy relevant if the

2In demand estimation, control function approaches are often viewed as alternatives to the structural IV

estimands proposed by Berry et al. (1995). While placing strong assumptions on the source of endogeneity

(Blundell and Matzkin, 2014), control function approaches have several advantages. For example, control

function estimands are more readily applicable in settings with relatively few consumers per market than

the estimator of Berry et al. (1995) — see, in particular, Petrin and Train (2010) and Kim and Petrin (2019)

for control function approaches in demand estimation. See also Wooldridge (2015) for a general overview of

control function approaches.
3See also Remark 3 for heuristic extension to settings with continuous D.
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policy depends on the value of the true parameter.4 In contrast, the analysis of this note

suggests that a large class of pseudo-true parameters is policy relevant if the policy depends

on the sign of the true parameter.

In the context of discrete-choice estimation, recent literature has highlighted the worry

that conclusions based on pseudo-true parameters are driven by particular distributional

assumptions such as T1EV or normally distributed random coefficients as is common in

mixed Logit estimation (Compiani, 2022; Tebaldi et al., 2023). In response, Compiani (2022)

and Tebaldi et al. (2023) propose nonparametric demand estimators to avoid possible model-

misspecification. While guaranteeing quantitatively accurate conclusions with infinite data,

the fully nonparametric approaches pose substantially more difficult estimation problems

than commonly considered in applied research. This note takes an alternative approach,

characterizing the extent to which conclusions based on commonly used estimands are robust

to incorrect distributional assumptions.5 In this regard, the results of this note complement

recent work of Andrews et al. (2023), who study the robustness properties of structural IV

estimands such as those suggested by Berry et al. (1995). The proposed sign preservation

property of this note is a substantially stronger robustness property than the sharp-zero

consistency property of Andrews et al. (2023). In particular, in contrast to sign preservation,

sharp-zero consistency cannot guarantee that strictly positive model-implied partial effects

were not generated by a distribution with strictly negative true partial effects. The additional

strength of the proposed sign preservation property comes at the cost of analyzing a more

4Important exceptions are discussed in Gourieroux et al. (1984), who show that for linear exponential

family PMLEs, correct specification of the conditional expectation function (rather than the full distribution)

suffices for correct inference on partial effects. This note extends these results by analyzing robustness also

under misspecification of the conditional expectation function.
5This also relates to the work of Ruud (1983) and Li and Duan (1989) who provide sufficient conditions

for maximum likelihood estimands to be correct up to an unknown scalar. In contrast to their work that

imposes linear index assumptions on the outcome model, I focus primarily on settings without distributional

assumptions on the data generating process.
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restricted class of estimands: While I show that mixed Logit estimands can suffer from sign

reversal under misspecification, this note does not provide (non-trivial) sufficient conditions

for sign preservation of mixed Logit estimands with non-degenerate mixing distributions.

Instead, sufficient conditions focus on estimands corresponding to models with coefficients

that are allowed to vary in observed covariates.6

The approach of characterizing robustness of economic conclusions based on pseudo-true

parameters draws heavily from the literature on positively-weighted causal effects in linear

regression (Yitzhaki, 1996; Angrist, 1998; Angrist and Krueger, 1999; Angrist and Pischke,

2009; S loczyński, 2022), linear two stage least squares (e.g., Angrist et al., 2000; Blandhol

et al., 2022; Borusyak and Hull, 2024), and difference-in-differences (e.g., de Chaisemartin

and Xavier d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Sun and Abraham, 2021; Callaway

and Sant’Anna, 2021; Baker et al., 2022; Borusyak et al., 2024). In contrast to the estimands

studied previously, however, the estimands I consider do not generally ensure that model-

implied partial effects are within the convex hull of the true partial effects.7 Instead, I define

a weaker version of robustness that is based only on the property that a convex combination

of model-implied partial effects is equal to a convex combination of the true partial effects.

The analysis of pseudo-true estimands in misspecified nonlinear models is also connected

to recent work by Silva and Winkelmann (2024) who highlight sufficient conditions for Pois-

son PMLEs to capture average marginal effects. The authors show that for jointly normally

distributed covariates, the model-implied average partial effects corresponding to the Poisson

linear index PMLE equal the true average partial effects. While the results in this note also

6See, for example, Dubé and Misra (2023) who apply a Logit model with coefficients given by nonpara-

metric functions of consumer characteristics in their welfare analysis of personalized pricing.
7In particular, in nonlinear models where the model-implied partial effect varies with covariates (e.g.,

Logit), it is not generally possible to guarantee that that model-implied partial effects are within the convex

hull of the true partial effects. This follows immediately from considering a setting where the true partial

effects are constant in the covariates.
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suggest that this equality of model-implied and true partial effects holds more generally for

a large class of estimands under assumptions of (conditional) normality, I focus primarily on

settings without restrictions on the joint distribution of covariates. This seems particularly

important as assumptions on the joint distribution of covariates — such as linearity of the

conditional expectation of D given covariates V — are seldom easier to motivate in prac-

tice than assumptions on the joint distribution of the outcome and covariates that initially

motivated the robustness analysis.

Finally, the results in this note provide a new motivation for recently proposed partially

and locally linear index estimators. In particular, I show that partially and locally linear

index natural exponential family estimators such as those proposed by Liu et al. (2021),

and special cases of Athey et al. (2019) and Farrell et al. (2021) target sign preserving

estimands without parametric distributional assumptions on the joint distribution of the

data. This is in contrast to fully linear index natural exponential family estimands (such as

the Poisson PMLE considered by Silva and Winkelmann (2024)) that are only known to be

sign preserving when the conditional expectation of D given covariates V is linear in V .

2 Setup
I consider the following setting: Given samples from a distribution P ∈ P , a researcher

constructs an estimator for a parameter θ∗(P ) ∈ Θ. Equipped with their estimate of θ∗(P ),

the researcher then makes conclusions about the association between observed variables of

interest in P . A large literature in econometrics focuses on differentiating estimators by

their statistical properties (e.g., efficiency) while keeping the parameter of interest θ∗ fixed.

In contrast, this note abstracts away from any statistical questions and focuses entirely on

characterizing the population-value of the estimator — i.e., the estimand θ∗ : P → Θ — and

whether it is informative about the relationships of interest.
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To fix ideas, I assume that the researcher forms conclusions about associations using a

model mθ, indexed by θ ∈ Θ, for the conditional expectation of Y given a variable of interest

D and other covariates V . Notably, the researcher’s model may be misspecified.

Definition 1. The researcher’s model of Y given D and V is a class of functions mθ ∈

L2,P : D × V → Y, indexed by a finite dimensional parameter θ ∈ Θ.8

Examples 2-5 give examples of commonly considered models. Example 2 references the

mixed Logit model with Normal random coefficients as used frequently in demand estimation.

Examples 3-5 discuss special cases of exponential family distributions, most notably the

Normal, Poisson, and Logit models, with parametric, semiparametric, and nonparametric

linear index functions. I refer to these models as linear, partially linear, and locally linear

index natural exponential family models, respectively.

Example 2 (Linear Index Mixed Logit). Let w ≡ (d, v⊤)⊤, and define

sθ(w,ψ) ≡ exp{w⊤(µ+ Σ 1
2ψ)}

1 + exp{w⊤(µ+ Σ 1
2ψ)}

, mθ(w) ≡
∫
sθ(w,ψ)dF (ψ)

where θ = (µ,Σ), F (ψ) denotes a standard multivariate Normal distribution function, and

mθ(w) is the model-implied mean given W = w. The mixed Logit (pseudo) likelihood is

L(y, w; θ) ≡ mθ(w)y (1 −mθ(w))1−y .

Example 3 (Linear Index Natural Exponential Family). Consider the conditional (pseudo)

likelihood of y given d and v defined by

L(y, d, v; θ) ∝ exp
(
(dα + v⊤β)y − A(dα + v⊤β)

)
,

where θ ≡ (α, β) and A is a known function. Then, by properties of natural exponential

family distributions, the model-implied mean given d and v is mθ(d, v) = A′(dα+ v⊤β). Key

8Notation: L2,P denotes the class of functions with finite second moments ∀P ∈ P.
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examples for commonly considered models are the Normal, Poisson, and Logit models where

Normal with known σ: A(dα + v⊤β) = 1
2(dα + v⊤β)2,

A′(dα + v⊤β) = dα + v⊤β,

Poisson: A(dα + v⊤β) = exp{dα + v⊤β},

A′(dα + v⊤β) = exp{dα + v⊤β},

Logit: A(dα + v⊤β) = log(1 + exp(dα + v⊤β)),

A′(dα + v⊤β) = exp(dα + v⊤β)
1 + exp(dα + v⊤β) .

Example 4 (Partially Linear Index Natural Exponential Family). Consider the conditional

(pseudo) likelihood of y given d and v defined by

L(y, d, v; θ) ∝ exp ((dα + b(v))y − A(dα + b(v))) ,

where θ ≡ (α, b) and b : V → R is unknown. The model-implied mean given d and v is

mθ(d, v) = A′(dα + b(v)).

Example 5 (Locally Linear Index Natural Exponential Family). Consider the conditional

(pseudo) likelihood of y given d and v defined by

L(y, d, v; θ) ∝ exp ((da(v) + b(v))y − A(da(v) + b(v))) ,

where θ ≡ (a, b) and a : V → R and b : V → R are unknown. The model-implied mean given

d and v is mθ(d, v) = A′(a(v) + b(v)).

3 Sign Reversal
This section shows that a large class of estimands is generally uninformative about the

sign of partial effects. For this purpose, I define subsets of P in which every conditional

partial effect of D on Y given V is strictly positive or negative.
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Definition 2. D is said to have strict P -positive association with Y given V if

EP [Y |D = d′, V ] a.s.
> EP [Y |D = d, V ], ∀d′ ≥ d ∈ D.

Strict P -negative association is defined analogously. For distributions P ∈ P , let P++ ⊂ P

denote the subset of distributions under which D has strict P -positive association with Y

given X. Analogously, let P−− ⊂ P denote the subset of distributions under which D has

strict P -negative association with Y given V .

Uninformativeness of an estimand about the sign of partial effects can then be described

by sign reversal (Definition 3). Sign reversal implies that for every value of the estimand,

there exist at least one distribution P++ with strictly positive partial effects and at least one

distribution P−− with strictly negative partial effect, both of which imply the same estimand

value. Of course, given any particular setting, only either can be true, yet the researcher

cannot differentiate between these distributions P++ and P−− when equipped with only the

sign-reversing estimand.

Definition 3. An estimand θ∗ : P → Θ is said to be sign reversing for the expected change

in Y due to D given V if

∀θ ∈ θ∗(P), ∃P−− ∈ P−−, P++ ∈ P++ : θ = θ∗(P−−) = θ∗(P++).

Sign reversal is a very undesirable property. Still, in the absence of functional form

assumptions, a large class of commonly used estimands is sign reversing. These estimands

are characterized by Assumptions 1-3. Assumption 1 characterizes the class of distributions

P under consideration. For ease of exposition, I focus on the simplest setting with a single

covariate throughout this section.

Assumption 1. P is the set of joint distributions of the random vector (Y,D, V ) where

Y ⊂ [y, y] ⊂ R, D = {d1, . . . , dJ} ⊂ R with 0 ≤ d1 < . . . < dJ , and V = {v1, . . . , vK} ⊂ R.

Further, ∀P ∈ P, the support of (D, V ) is D × V.
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Assumption 2 defines the estimand through moment conditions. Examples 6 and 7 show

that (pseudo) maximum likelihood estimands for the mixed Logit model and commonly

considered linear index natural exponential family models satisfy Assumption 2.9

Assumption 2. Let Q ∈ N. The estimand θ∗ : P → Θ is defined as the solution to

EP [(Y −mθ∗(P )(D, V ))f q
θ∗(P )(D, V )] = 0,

EP [D(Y −mθ∗(P )(D, V ))hq
θ∗(P )(D, V )] = 0,

EP [V (Y −mθ∗(P )(D, V ))lqθ∗(P )(D, V )] = 0,

(2)

∀q ∈ [Q], where (f q
θ )q∈[Q], (hq

θ)q∈[Q], and (lqθ)q∈[Q] are functions in L2,P indexed by θ. Further,

mθ(D,V) ⊂ int(Y), ∀θ ∈ θ∗(P).

Example 6 (Mixed Logit Pseudo Maximum Likelihood). Suppose W ≡ (D, V, 1)⊤ satis-

fies Assumption 1. Consider the pseudo maximum likelihood estimand that maximizes the

likelihood of Example 2, or equivalently,

θ∗(P ) ≡ argmax
θ∈Θ

EP [Y logmθ(w) + (1 − Y ) log(1 −mθ(w))].

Suppose for simplicity that Σ1/2 = diag(σD, σV , σ1) corresponding to the random coefficient-

shocks ψ = (ψD, ψV , ψ1). Hence, θ = (µ, σD, σV , σ1). The corresponding first order condi-

tions with respect to µ are

EP

[
W (Y −mθ(W ))

∫
sθ(W,ψ)(1 − sθ(W,ψ))dF (ψ)
mθ(W,ψ)(1 −mθ(W,ψ))

]
= 0.

9PMLEs as discussed here can be understood as limiting objects of frequentist pseudo maximum likeli-

hood estimators as in White (1982), or as limiting Bayes estimators under a L2-loss whenever the Bernstein-

von Mises theorem applies.
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The first order conditions with respect to (σD, σV , σ1) are

EP

[
D(Y −mθ(W ))

∫
ψDsθ(W,ψ)(1 − sθ(W,ψ))dF (ψ)
mθ(W,ψ)(1 −mθ(W,ψ))

]
= 0

EP

[
V (Y −mθ(W ))

∫
ψV sθ(W,ψ)(1 − sθ(W,ψ))dF (ψ)
mθ(W,ψ)(1 −mθ(W,ψ))

]
= 0

EP

[
(Y −mθ(W ))

∫
ψ1sθ(W,ψ)(1 − sθ(W,ψ))dF (ψ)
mθ(W,ψ)(1 −mθ(W,ψ))

]
= 0.

It follows that the mixed Logit pseudo maximum likelihood estimand satisfies (2) with Q = 2.

Example 7 (Linear Index Natural Exponential Family Pseudo Maximum Likelihood). Sup-

pose W ≡ (D, V, 1)⊤ satisfies Assumption 1. Consider the pseudo maximum likelihood esti-

mand that maximizes the likelihood of Example 3, or equivalently,

θ∗(P ) ≡ argmax
θ∈Θ

EP [(W⊤θ)Y − A(W⊤θ)].

The first order conditions with respect to θ are

EP [W (Y − A′(W⊤θ))] = 0.

By properties of natural exponential families, we have A′(W⊤θ) = mθ(W ). Hence, the linear

index natural exponential family PMLE satisfies (2) with Q = 1.

Finally, Assumption 3 places a rank condition on the functions (f q
θ , h

q
θ, l

q
θ)q∈[Q] referenced

in Assumption 2.10 The assumption ensures that these functions do not place all weight on

fewer than two unique support points of D and fewer than three unique support points of V .

Note also that Assumption 3 is directly satisfied for constant (f q
θ , h

q
θ, l

q
θ)q∈[Q] when K ≥ 3.11

10Notation: For a positive integer S ∈ N∗, let [S] ≡ N∗
≤S denote the set of integers from 1 to S.

11For example, suppose that Q = 1 and fθ, hθ, lθ are all equal to 1 as in Example 7. Then Assumption 3

is equivalent to non-singularity of 
1 1 1

d1 dJ dJ

v1 v2 v3

 .
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Assumption 3. ∀P ∈ P, ∃(q′, q′′, q′′′) ∈ [Q]3, (d′, d′′) ∈ [J ]2, and (v′, v′′, v′′′) ∈ [K]3 s.t.
f q′

θ∗(P )(d′, v′) f q′

θ∗(P )(d′′, v′′) f q′

θ∗(P )(d′′, v′′′)

d′hq′′

θ∗(P )(d′, v′) d′′hq′′

θ∗(P )(d′′, v′′) d′′hq′′

θ∗(P )(d′′, v′′′)

v′lq
′′′

θ∗(P )(d′, v′) v′′lq
′′′

θ∗(P )(d′′, v′′) v′′′lq
′′′

θ∗(P )(d′′, v′′′)


is non-singular.

Proposition 1 shows that assumptions 1-3 characterize a class of estimands that are sign

reversing. The result highlights potential problems with even basic qualitative conclusions

of commonly used estimands under misspecification, and thus motivates the search for more

robust estimands that I turn to next.

Proposition 1. Let assumptions 1-3 hold. Then θ∗ is sign reversing.

Proof. See Appendix B.1.

Remark 1. Note that the Normal linear index PMLE defined is Example 7 is equivalent

to a linear regression estimand. For this special case, Proposition 1 is similar to results in

Blandhol et al. (2022) that highlight potential sign reversal of linear regression and linear

two-stage least squares estimands without additional parametric distributional assumptions

(cf. Proposition 7 in Blandhol et al., 2022). Proposition 1 complements these existing results

for linear models with analyses of estimands for nonlinear models, including (mixed) Logit

and Poisson estimands.

4 Sign Preservation
This section defines sign preservation, a robustness property of estimands that guarantees

qualitatively correct conclusions about the direction of the partial effects. I define two

versions of sign preservation (weak and strong) to allow for better differentiation of partially

and locally linear index model estimands in subsequent sections.

This follows immediately from Assumption 1 when K ≥ 3.
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Weak sign preservation is defined in Definition 5. A weakly sign preserving estimand

θ∗ associated with a researcher’s model mθ is guaranteed to result in model-implied partial

effects that are of the same sign as the true partial effects if all true partial effects have the

same direction (as defined in Definition 4).

Definition 4. D is said to have P -positive association with Y given V if

EP [Y |D = d′, V ]
a.s.
≥ EP [Y |D = d, V ], ∀d′ ≥ d ∈ D.

P -negative association is defined analogously. For distributions P ∈ P, let P+ ⊂ P de-

note the subset of distributions under which D has P -positive association with Y given V .

Analogously, let P− ⊂ P denote the subset of distributions under which D has P -negative

association with Y given V .

Definition 5. An estimand θ∗ : P → Θ corresponding to a model mθ, θ ∈ Θ, is said to be

sign preserving for the expected change in Y due to D given V if,

mθ∗(P )(d′, V )
a.s.
≥ mθ∗(P )(d, V ), ∀P ∈ P+, d

′ ≥ d ∈ D,

mθ∗(P )(d′, V )
a.s.
≤ mθ∗(P )(d, V ), ∀P ∈ P−, d

′ ≥ d ∈ D.

To allow for correct conclusions about the sign of partial effects in settings where the

true partial effects are not all of the same sign, I also define strong sign preservation in

Definition 7. In contrast to weak sign preservation, strong sign preservation ensures that the

model-implied partial effects are of the same sign as the true partial effects for every value

of V . Both weak and strong sign preservation require monotone effects of D on Y given V .

Definition 6. D is said to have P -monotone association with Y given V if, ∀v ∈ V,

{EP [Y |D = d′, V = v] ≥ EP [Y |D = d, V = v], ∀d′ ≥ d ∈ D}

or {EP [Y |D = d′, V = v] ≤ EP [Y |D = d, V = v], ∀d′ ≥ d ∈ D} .
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For distributions P ∈ P, let P± ⊂ P denote the subset of distributions under which D has

P -monotone association with Y given V . Further, for P ∈ P±, let V+ and V− denote values

of V with positive and negative partial effects, respectively.

Definition 7. An estimand θ∗ : P → Θ corresponding to a model mθ, θ ∈ Θ, is said to be

strongly sign preserving for the expected change in Y due to D given V if, ∀P ∈ P±,

mθ∗(P )(d′, v) ≥ mθ∗(P )(d′, v), ∀d′ ≥ d ∈ D, v ∈ V+,

mθ∗(P )(d′, v) ≤ mθ∗(P )(d′, v), ∀d′ ≥ d ∈ D, v ∈ V−.

5 Sufficient Conditions for Sign Preservation
This section provides sufficient conditions for estimands to satisfy weak and strong sign

preservation. In addition to providing high-level sufficient conditions, I also provide sufficient

conditions for linear, partially linear, and locally linear index natural exponential family

pseudo maximum likelihood estimands (hereafter: linear, partially linear, locally linear index

NEF-PMLEs, respectively) corresponding to the models discussed in Examples 3-5.

5.1 Sufficient Conditions for Weak Sign Preservation

A key intermediate result leveraged to characterize sign preserving estimands expresses a

convex combination of model-implied partial effects as a convex combination of true partial

effects.12 This result is formally stated in Lemma 1 and is based on a single simple moment

condition stated in Assumption 4.

Assumption 4. The estimand θ∗ : P → Θ is unique and satisfies

EP (D − EP [D|V ])(Y −mθ∗(P )(D, V )) = 0, ∀P ∈ P . (3)

12The coefficients ωP (j, v) of Lemma 1 are weakly positive and integrate to a constant, but do not

necessarily integrate to one. It is possible to normalize the coefficients by dividing with
∑J

j=2 EP [ωP (j, V )].
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Lemma 1. Suppose that Assumption 4 holds, then ∀P ∈ P,

J∑
j=2

EP [(EP [Y |D = dj, V ] − EP [Y |D = dj−1, V ])ωP (j, V )]

=
J∑

j=2
EP [(mθ(dj, V ) −mθ(dj−1, V ))ωP (j, V )] ,

(4)

where ωP (j, V ) ≡ (EP [D|D ≥ dj, V ] − EP [D|D < dj, V ]) Pr(D ≥ dj|V ) Pr(D < dj|V ).

Proof. See Appendix B.2.

Remark 2. Lemma 1 is closely connected to the literature on the weakly causal interpre-

tation of linear regression, two-stage least squares, and difference-in-difference estimands

(e.g., Yitzhaki, 1996; Blandhol et al., 2022; de Chaisemartin and Xavier d’Haultfoeuille,

2020, and other citations in the introduction). Unlike this literature on linear estimands,

however, Lemma 1 does not express a single parameter as a convex combination of partial

effects. While such a result is immediately implied for the versions of Normal PMLEs con-

sidered here when plugging in the expression in Example 3 for mθ, it is not possible to obtain

similar expressions in the more general class of NEF-PMLEs.

Remark 3. While I focus on discrete D throughout the main text, it is straightforward

to extend the analysis to continuously distributed D under regularity conditions as in Silva

and Winkelmann (2024) who analyze Poisson PMLEs. In particular, (4) would instead

correspond to

EP

[∫
D

∂

∂d
EP [Y |D = d, V ]

∣∣∣
d=j

ωP (j, V )dj
]

= EP

[∫
D

∂

∂d
mθ(d, V )

∣∣∣
d=j

ωP (j, V )dj
]
, (5)

where ωP (j, V ) is as in Lemma 1. Normalizing both sides of the equation by EP [
∫

D ωP (j, V )dj],

we obtain the result that a convex combination of model-implied partial derivatives equals a

convex combination of the true partial effects. Note further that for normally distributed

D|V , the coefficients ωP (·, V ) are proportional to the conditional density of D|V (Stoker,

1986; Wooldridge, 2010, Section 15.6). (5) thus implies that for normally distributed D|V ,
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the model-implied average partial derivative is equal to the true average partial derivative for

all unique estimands satisfying (3). As shown below, this includes linear index NEF-PMLEs

under linearity of EP [D|V ], as well as all partially and locally linear index NEF-PMLEs.

To help characterize robustness properties of estimands, it is also useful to highlight an

important feature of the models highlighted in Examples 3-5:

Definition 8. A class of scalar-valued functions mθ on D × V indexed by θ ∈ Θ is said to

be monotone in D given V if, ∀θ ∈ Θ, P ∈ P ,

{
mθ(d′, V )

a.s.
≥ mθ(d, V ), ∀d′ ≥ d ∈ D

}
or

{
mθ(d′, V )

a.s.
≤ mθ(d, V ), ∀d′ ≥ d ∈ D

}
.

As shown by Proposition 2, simple sufficient conditions for an estimand to be weakly sign

preserving are then given by assumptions 4 and 5.

Assumption 5. The researcher’s model mθ is monotone in D given V .

Proposition 2. If assumptions 4-5 hold, then θ∗ is weakly sign preserving for the expected

change in Y due to D given V .

Proof. See Appendix B.3.

Proposition 2 shows that any estimand corresponding to a monotone model and that can

be shown to satisfy the moment condition (3) is weakly sign preserving. Corollaries 1 and 2

directly link these assumptions to commonly used estimands. First, Example 7 shows that

all identified linear index NEF-PMLEs satisfy Assumption 6. As stated in Corollary 1, this

assumption allows for a sufficiency result in the special case that the conditional expectation

of D given V is linear in V .

Assumption 6. The estimand θ∗ : P → Θ is unique and satisfies

EPD(Y −mθ∗(P )(D, V )) = 0, EPV (Y −mθ∗(P )(D, V )) = 0, ∀P ∈ P .
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Corollary 1. Suppose that assumptions 5-6 hold. If in addition EP [D|V ] is linear in V ,

∀P ∈ P, then θ∗ is weakly sign preserving for the expected change in Y due to D given V .

Proof. See Appendix B.4.1.

Remark 4. Given its equivalence to the linear regression estimand, the well-known robust-

ness results of Yitzhaki (1996) and Angrist and Krueger (1999) directly imply sign preser-

vation under linearity of EP [D|V ] for the Normal linear index PMLE. Corollary 1 extends

these results to all other linear index NEF-PMLEs.

A key caveat of Corollary 1 is that sign preservation of the estimand was only shown under

linearity of EP [D|V ]. In the absence of explicit functional form assumptions (that may be

equally difficult to motivate in practice as functional form assumptions for EP [Y |D, V ]),

linearity is guaranteed only in the special cases when D is randomly assigned or when

V is fully saturated. To also accommodate settings with complex V (e.g., a continuous

covariate), Assumption 7 provides an alternative sufficient condition that guarantees weak

sign preservation of estimands associated with monotone models also in the absence of any

parametric restrictions on the joint distribution of D and V .

Assumption 7. The estimand θ∗ : P → Θ is unique and satisfies

EPD(Y −mθ∗(P )(D, V )) = 0, EP [Y −mθ∗(P )(D, V )|V ] a.s.= 0, ∀P ∈ P .

Examples 8 and 9 show that any identified partially or locally linear index NEF-PMLE

satisfies Assumption 7. Corollary 2 then formally states that weak sign preservation is

guaranteed for these estimands.

Example 8 (Partially Linear Index NEF-PMLE). Consider the pseudo maximum likelihood

estimand that maximizes the likelihood of Example 4, or equivalently,

θ∗(P ) ≡ argmax
θ∈Θ

EP [(Dα + b(V ))Y − A(Dα + b(V ))].
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The first order condition with respect to α is

EP [D(Y − A′(Dα + b(V )))] = 0.

The first order conditions with respect to b are

EP [Y − A′(Dα + b(V ))|V ] a.s.= 0.

By properties of natural exponential families, we have A′(Dα + b(V )) = mθ(D, V ). Hence,

all identified partially linear index NEF-PMLEs satisfy Assumption 7.

Example 9 (Locally Linear Index NEF-PMLE). Consider the pseudo maximum likelihood

estimand that maximizes the likelihood of Example 5, or equivalently,

θ∗(P ) ≡ argmax
θ∈Θ

EP [(Da(V ) + b(V ))Y − A(Da(V ) + b(V ))].

The first order condition with respect to a are

EP [D(Y − A′(Da(V ) + b(V )))|V ] a.s.= 0, (6)

so that taking expectations over V we have EP [D(Y − A′(Da(V ) + b(V )))] = 0. The first

order conditions with respect to b are

EP [Y − A′(Da(V ) + b(V ))|V ] a.s.= 0.

By properties of natural exponential families, we have A′(Da(V )+b(V )) = mθ(D, V ). Hence,

all identified locally linear index NEF-PMLEs satisfy Assumption 7.

Corollary 2. Suppose that assumptions 5 and 7 hold. Then θ∗ is weakly sign preserving for

the expected change in Y due to D given V .

Proof. See Appendix B.4.2.

Remark 5. Given the equivalence between linear regression estimations with saturated V

and partially linear regression estimands (e.g., Robinson, 1988; Chernozhukov et al., 2018),
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Corollary 2 follows straightforwardly from results in Angrist and Krueger (1999) for the Nor-

mal partially linear index PMLE. The presented results here further generalize sign preser-

vation to all partially and locally linear index NEF-PMLEs, including estimands targeted by

the partially linear Logit estimators provided by Liu et al. (2021) or the locally linear Logit

estimators applied in Farrell et al. (2021) and Dubé and Misra (2023).

5.2 Sufficient Conditions for Strong Sign Preservation

Example 9 and Corollary 2 showed that all identified locally linear index NEF-PMLEs

are weakly sign preserving. Example 9 however also showed that these estimands satisfy

the stronger moment conditions (6). Corollary 3 shows that these moment conditions are

sufficient conditions for strong sign preservation. Hence, among the estimands considered

in this note, locally linear index NEF-PMLEs allow for the strongest conclusions about the

direction of partial effects under misspecification.

Assumption 8. The estimand θ∗ : P → Θ is unique and satisfies

EP [D(Y −mθ∗(P )(D, V ))|V ] a.s.= 0, EP [Y −mθ∗(P )(D, V )|V ] a.s.= 0, ∀P ∈ P .

Corollary 3. Suppose that assumptions 5 and 8 hold. Then θ∗ is strongly sign preserving

for the expected change in Y due to D given V .

Proof. See Appendix B.5.

6 Implications for Control Function Approaches
Strong and weak sign preservation as discussed thus far describe an estimands ability

to correctly characterize features of the reduced form (i.e., descriptive) relationship between

Y and D. In most policy settings analyzed in economics, however, researchers employing

estimands such as those listed in Examples 3-5 are also interested in analyzing features
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of causal effects of D on Y . This section shows that the previous analyses generalizes

straightforwardly to the study of causal effects in a control function setting.

To fix ideas, consider a standard all-causes model that relates the outcome of interest Y

to a scalar-valued variable of interest D and all other (partially unobserved) determinants of

U (see, e.g., Heckman and Vytlacil, 2007). Following Imbens and Newey (2009), a control

function is any (observed or identified) V such that D is as-good-as randomly assigned given

V . The setting is stated in Assumption 9, where g is a (unknown) structural response

function.

Assumption 9. Y = g(D,U) where D ⊥⊥ U |V .

Lemma 2 states that under Assumption 9, the descriptive properties captured by sign

preserving estimands are equivalent to properties of the causal effects of D on Y given V .

It thus follows that for control function estimands, sign preservation captures robustness to

correct inference on the direction of causal effects under misspecification.

Lemma 2. Let Assumption 9 hold. Define CATEd′,d
P (V ) ≡ EP [g(d′, U) − g(d, U)|V ].

(a) CATEd′,d
P (V )

a.s.
≥ 0, ∀d′ ≥ d ∈ D, iff D has P -positive association with Y given V .

(b) CATEd′,d
P (V )

a.s.
≤ 0, ∀d′ ≥ d ∈ D, iff D has P -negative association with Y given V .

(c) ∀v ∈ V,
{
CATEd′,d

P (v) ≥ 0, ∀d′ ≥ d ∈ D
}

or
{
CATEd′,d

P (v) ≤ 0, ∀d′ ≥ d ∈ D
}
, iff D

has P -monotone association with Y given V .

Proof. See Appendix B.6.

7 Conclusion
This note shows that under misspecification, a large class of estimands, including (mixed)

Logit and Poisson PMLEs, are generally not informative about the direction of the true

partial effects. To ensure robustness to misspecification of conclusions about the sign of the
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true partial effects, I consider a minimal robustness property: Sign preservation. Intuitively,

this property simply ensures that the model-implied partial effects are not all of the opposite

sign as the true partial effects.

The note then develops simple sufficient conditions that guarantee sign preservation of

an estimand. The results shows partially and locally linear index natural exponential family

PMLEs are highly robust to misspecification of the outcome model without any parametric

assumptions on the joint distribution of covariates. This suggests, in particular, that the

recently proposed estimators of Liu et al. (2021) and special cases of the local maximum

likelihood estimators of Athey et al. (2019) and Farrell et al. (2021) are highly attractive in

many applied settings.
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A Sign Preservation in Multivariate-Outcome Models
This section extends the analysis of sign preserving estimands to multivariate outcomes

Y = (Y1, . . . , YS)⊤ and multivariate variables of interest D = (D1, . . . , DS)⊤, for some S ∈ N.

Analogous the analysis of the main text, I assume that the support of Y is Y ⊂ [y, y]S, the

support of D is D ≡ {d1, . . . , dJ}S, and the support of the covariates V is V . Further, the

support of (D, V ) is D × V .

The results have implications, in particular, for multinomial Logit estimands where Y

denotes the choice among S alternatives (and one outside option) and D denotes the cor-

responding choice features. See, in particular, Examples 10-11. Throughout, for a random

vector D = (D1, . . . , DS)⊤, let Ds and D−s denote the sth element of D and D without its

sth element, respectively. Further, the researcher’s model mθ : D×V → Y is a S-dimensional

vector with elements ms,θ ∈ L2,P : Ds × D−s × V → Y .

Example 10 (Multivariate Linear Index Natural Exponential Family). For θ = (α, β),

define the S-dimensional vector ηθ(d, v) ≡ (dsα+v⊤β)S
s=1. Consider the conditional (pseudo)

likelihood of y given d and v defined by

L(y, d, v; θ) ∝ exp
(
ηθ(d, v)⊤y − A(ηθ(d, v))

)
,

where A is a known scalar-valued function. Then, by properties of natural exponential fami-

lies, the model-implied mean of Ys given D = d and V = v is ms,θ(d, v) = As(ηθ(d, v)), where

As denotes the partial derivative of A with respect to its sth argument. A key example is the

multinomial Logit model where

A(ηθ(d, v)) = log(1 +
S∑

s=1
exp(dsα + v⊤β)), As(ηθ(d, v)) = exp(dsα + v⊤β)

1 +∑S
l=1 exp(dlα + v⊤β)

.

Example 11 (Multivariate Partially Linear Index Natural Exponential Family). For θ =

(α, b1, . . . , bS), with bs : V → R,∀s ∈ [S], define the S-dimensional vector ηθ(d, v) ≡ (dsα +
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bs(v))S
s=1. Consider the conditional (pseudo) likelihood of y given d and v defined by

L(y, d, v; θ) ∝ exp
(
ηθ(d, v)⊤y − A(ηθ(d, v))

)
,

where A is a known scalar-valued function. The model-implied mean of Ys given D = d

and V = v is ms,θ(d, v) = As(ηθ(d, v)). An example is the partially linear multinomial Logit

model where

A(ηθ(d, v)) = log(1 +
S∑

s=1
exp(dsα + bs(v))), As(ηθ(d, v)) = exp(dsα + bs(v))

1 +∑S
l=1 exp(dlα + bl(v))

.

Section A.1 defines and discusses weak diagonal sign preservation. Section A.2 then

states sufficient conditions analogous to those in Section 5.1 of the main text. I focus on

extending the results for weak sign preservation for brevity.

A.1 Weak Diagonal Sign Preservation

Definition 9 defines diagonal positive (or negative) association to allow for characteriza-

tion subsets of the distributions P with weakly positive (or negative) partial effects. Diagonal

here refers to the sth element of Y being positively (or negatively) associated with the sth

element of D. In the discrete choice setting, for example, Ys would correspond to the choice

of the sth good and Ds could be a marketing variable of the sth good. Positive diagonal

association would then say that the choice probability of good sth is weakly increasing in the

marketing variable of the sth good holding all other marketing variables D−s and covariates

V fixed. In analogy to Definition 5, Definition 10 then formulates diagonal sign preservation.

Definition 9. D is said to have P -positive diagonal association with Y given given V

if, for every s ∈ [S], Ds has P -positive association with Ys given D−s and V . P -negative

diagonal association is defined analogously. For distributions P ∈ P, let PS
+ ⊂ P denote the

subset of distributions under which D has P -positive diagonal association with Y given V .

Analogously, let PS
− ⊂ P denote the subset of distributions under which D has P -negative

diagonal association with Y given V .
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Definition 10. An estimand θ∗ : P → Θ is said to be diagonal sign preserving for the

expected change in Y due to D given V if

ms,θ∗(P )(d′, D−s, X)
a.s.
≥ ms,θ∗(P )(d,D−s, X), ∀P ∈ PS

+, d
′ ≥ d ∈ Ds, s ∈ [S],

ms,θ∗(P )(d′, D−s, X)
a.s.
≤ ms,θ∗(P )(d,D−s, X), ∀P ∈ PS

−, d
′ ≥ d ∈ Ds, s ∈ [S].

A.2 Sufficient Conditions for Weak Diagonal Sign Preservation

This section states sufficient conditions for weak diagonal sign preservation. As in the

main text, I begin with a high-level condition (Assumption 10) that implies that the model-

implied diagonal partial effects are a positively weighted average of the true partial effects.

This is formally stated in Lemma 3.

Assumption 10. The estimand θ∗ : P → Θ is unique and satisfies

S∑
s=1

EP (Ds − EP [Ds|D−s, V ])(Ys −ms,θ∗(P )(D, V )) = 0, ∀P ∈ P . (7)

Lemma 3. Suppose that Assumption 10 holds, then ∀P ∈ P,

S∑
s=1

J∑
j=2

EP [(EP [Ys|Ds = dj, D−s, V ] − EP [Ys|Ds = dj−1, D−s, V ])ωs,P (j,D−s, V )]

=
S∑

s=1

J∑
j=2

EP [(ms,θ(dj, D−s, V ) −ms,θ(dj−1, D−s, V ))ωs,P (j,D−s, V )] ,
(8)

where

ωs,P (j,D−s, V ) ≡ (EP [Ds|Ds ≥ dj, D−s, V ] − EP [Ds|Ds < dj, D−s, V ])

× Pr(Ds ≥ dj|D−s, V ) Pr(Ds < dj|D−s, V ).

Proof. Fix an arbitrary P ∈ P .

Note that for Ds = {d1, . . . , dJ}, we can write

EP [Ys|D, V ] = EP [Ys|Ds = d1, D−s, V ] +
Ds∑
j=2

∆j
s,P (D−s, V ),
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where

∆j
s,P (D−s, V ) ≡ EP [Ys|Ds = dj, D−s, V ] − EP [Ys|Ds = dj−1, D−s, V ].

Similarly, ∀θ ∈ Θ,

ms,θ(D, V ) = ms,θ(d1, D−s, V ) +
D∑

j=2
∆j

s,θ(D−s, V ),

where

∆j
s,θ(D, V ) ≡ ms,θ(dj, D−s, V ) −ms,θ(dj−1, D−s, V ).

Let θ = θ∗(P ). By Assumption 10, we then have

0 =
S∑

s=1
EP (Ds − EP [Ds|D−s, V ])(Ys −ms,θ∗(P )(D, V ))

=
S∑

s=1
EP (Ds − EP [Ds|D−s, V ])

(
EP [Ys|Ds = d1, D−s, V ] −ms,θ∗(P )(d1, D−s, V )

)

+
S∑

s=1
EP (Ds − EP [Ds|D−s, V ])

Ds∑
j=2

(
∆j

s,P (D−s, V ) − ∆j
s,θ∗(P )(D−s, V )

)
[1]=

S∑
s=1

EP EP [(Ds − EP [Ds|D−s, V ])|D−s, V ]
(
EP [Ys|Ds = d1, D−s, V ] −ms,θ∗(P )(d1, D−s, V )

)

+
S∑

s=1

J∑
j=2

EP (Ds − EP [Ds|D−s, V ])1{dj ≤ Ds}
(
∆j

s,P (D−s, V ) − ∆j
s,θ∗(P )(D−s, V )

)
[2]=

S∑
s=1

J∑
j=2

EP EP [(Ds − EP [Ds|D−s, V ])1{dj ≤ Ds}|D−s, V ]
(
∆j

s,P (D−s, V ) − ∆j
s,θ∗(P )(D−s, V )

)
,

where [1] and [2] follow from the law of iterated expectations. As a consequence,

S∑
s=1

J∑
j=2

EP ∆j
s,P (D−s, V )ωs,P (j,D−s, V ) =

S∑
s=1

J∑
j=2

EP ∆j
s,θ∗(P )(D−s, V )ωs,P (j,D−s, V ),
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where, ∀j ∈ [J ] \ 1,

ωs,P (j,D−s, V ) ≡ EP [(Ds − EP [Ds|D−s, V ])1{dj ≤ Ds}|D−s, V ]

= (EP [Ds|Ds ≥ dj, D−s, V ] − EP [Ds|Ds < dj, D−s, V ])

× Pr(Ds ≥ dj|D−s, V ) Pr(Ds < dj|D−s, V )
a.s.
≥ 0.

Since the choice of P ∈ P was arbitrary, this concludes the proof.

As shown by Proposition 3, Assumption 10 is sufficient under additional restrictions on

the researcher’s model as stated in Assumption 11. Note, in particular, that commonly used

multinomial Logit models as in Examples 10 and 11 satisfy Assumption 11.

Definition 11. A class of scalar-valued functions mθ on D × V indexed by θ ∈ Θ is said to

be diagonally monotone in D given V if, ∀θ ∈ Θ, P ∈ P , s ∈ [S],

{
ms,θ(d′, D−s, V )

a.s.
≥ ms,θ(d,D−s, V ), ∀d′ ≥ d ∈ Ds

}
or

{
ms,θ(d′, D−s, V )

a.s.
≤ ms,θ(d,D−s, V ), ∀d′ ≥ d ∈ Ds

}
.

Assumption 11. The researcher’s model mθ is diagonally monotone in D given V .

Proposition 3. If assumptions 10 and 11 hold, then θ∗ is weakly diagonal sign preserving

for the expected change in Y due to D given V .

Proof. Note that Lemma 3 applies by Assumption 10. By Assumption 11, mθ(P ) is diagonally

monotone in D given V , so that the right hand side of (8) is either a positively weighted

sum of weakly negative terms or a positively weighted sum of weakly positive terms. Hence,

the sign of the right hand side (weakly) determines the sign of all terms in the sum.

Now, if P ∈ PS
+, then Lemma 3 implies

0 ≤
J∑

j=2
EP [(ms,θ(dj, D−s, V ) −ms,θ(dj−1, D−s, V ))ωs,P (j,D−s, V )] , ∀s ∈ [S].
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Hence, since ωs,P (j,D−s, V )
a.s.
≥ 0, diagonal monotonicity implies

ms,θ∗(P )(d′, D−s, V )
a.s.
≥ ms,θ∗(P )(d′, D−s, V ), ∀d′ ≥ d ∈ Ds, s ∈ [S].

Analogous arguments imply that if P ∈ PS
−, then

ms,θ∗(P )(d′, D−s, V )
a.s.
≤ ms,θ∗(P )(d′, D−s, V ), ∀d′ ≥ d ∈ Ds, s ∈ [S].

Since the choice of P ∈ P was arbitrary, this concludes the proof.

To show that the multinomial Logit linear index PMLE can also satisfy Assumption 10,

I state a simple set of alternative moment conditions in (12). See Example 12. Corollary 5

then confirms diagonal sign preservation of the corresponding estimand under identification

and three additional conditions: 1) The feature Ds is mean-independent of the other features

D−s given V , 2) the conditional expectation of Ds given V is linear, and 3) EP [Ds|V ] is the

same for all choices s ∈ [S]. All of these conditions are strong. In industrial organization

and quantitative marketing applications where multinomial Logit estimands are applied to

study, for example, own-price elasticities, it is not commonly assumed that the vector of

prices is mutually mean-independent. Linearity of E[Ds|V ] is guaranteed only for saturated

V or randomly assigned D. The assumption of equality of E[Ds|V ], perhaps, seems most

difficult to motivate, however, since it does not even permit differences in the unconditional

mean of Ds for different goods s ∈ [S].

Assumption 12. The estimand θ∗ : P → Θ is unique and satisfies

S∑
s=1

EPDs(Ys −ms,θ∗(P )(D, V )) = 0,
S∑

s=1
EPV (Ys −ms,θ∗(P )(D, V )) = 0, ∀P ∈ P . (9)

Example 12 (Multivariate Linear Index NEF-PMLE). Consider the pseudo maximum like-

lihood estimand that maximizes the likelihood of Example 10, or equivalently,

θ∗(P ) ≡ argmax
θ∈Θ

EP [ηθ(D, V )⊤Y − A(ηθ(D, V ))],

33



where θ = (α, β). The first order conditions with respect to α is

∑
s=1

EP [Ds(Ys − As(ηθ(D, V )))] = 0,

where As denotes the partial derivative of A with respect to its sth argument, and similarly

for the first order conditions with respect to β, we have

∑
s=1

EP [V (Ys − As(ηθ(D, V )))] = 0.

By properties of natural exponential families, we have As(ηθ(D, V )) = ms,θ(D, V ). Hence,

the multivariate linear index NEF-PMLE satisfies (9).

Corollary 4. Suppose that assumptions 11-12 hold. If in addition ∀P ∈ P, ∃γP ∈ R
|V| :

EP [Ds|D−s, V ] = V ⊤γP ,∀s ∈ [S], then θ∗ is weakly diagonal sign preserving for the expected

change in Y due to D given V .

Proof. Fix an arbitrary P ∈ P .

By Assumption 12, we have ∀γ ∈ R|V| that

∑
s=1

EPV
⊤γ(Ys −ms,θ∗(P )(D, V )) = 0.

Take γP satisfying EP [Ds|D−s, V ] = V ⊤γP ,∀s ∈ [S], which was assumed to exist in the

statement of the corollary. Then, by Assumption 12, we have

0 =
∑
s=1

EPDs(Ys −ms,θ∗(P )(D, V )) − EPV
⊤γP (Ys −ms,θ∗(P )(D, V ))

=
∑
s=1

EP (Ds − V ⊤γP )(Ys −ms,θ∗(P )(D, V ))

=
∑
s=1

EP (Ds − EP [Ds|D−s, V ])(Ys −ms,θ∗(P )(D, V )).

Since the choice of P ∈ P was arbitrary, this implies that Assumption 10 is satisfied.

Applying Proposition 3 completes the proof.
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To avoid two of the three strong restrictions on P that suffice for diagonal sign preser-

vation of the multinomial Logit linear PMLE of Example 10, I provide alternative sufficient

conditions in Assumption 13. As shown in Example 13, these weaker conditions are satisfied

by the multinomial Logit partially linear index PMLE. Corollary 5 then shows that diagonal

sign preservation can be guaranteed without parametric restrictions on E[Ds|V ]. In contrast

to the results of Corollary 2 of the main text, however, mean-independence of Ds and D−s

given V is still used in the statement of Corollary 5. Exploring alternative multinomial

Logit estimands that can be guaranteed sign preserving robustness properties without these

restrictions on the joint distribution of (D, V ) might thus be an interesting area for future

research.13

Assumption 13. The estimand θ∗ : P → Θ is unique and satisfies

S∑
s=1

EPDs(Ys −ms,θ∗(P )(D, V )) = 0, EP [Ys −ms,θ∗(P )(D, V )|V ] a.s.= 0, ∀P ∈ P . (10)

Example 13 (Multivariate Partially Linear Index NEF-PMLE). Consider the pseudo max-

imum likelihood estimand that maximizes the likelihood of Example 11, or equivalently,

θ∗(P ) ≡ argmax
θ∈Θ

EP [ηθ(D, V )⊤Y − A(ηθ(D, V ))],

where θ = (α, b1, . . . , bS), with bs : V → R,∀s ∈ [S]. The first order conditions with respect

to α is

∑
s=1

EP [Ds(Ys − As(ηθ(D, V )))] = 0.

For every s ∈ [S], the first order conditions with respect to bs are

EP [Ys − As(ηθ(D, V ))|V ] a.s.= 0.

13Issues arising from mutually dependent D are closely connected to contamination bias arising in linear

regression (see, e.g., Goldsmith-Pinkham et al., 2024).
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By properties of natural exponential families, we have As(ηθ(D, V )) = ms,θ(D, V ). Hence,

the multivariate linear index NEF-PMLE satisfies (10).

Corollary 5. Suppose that assumptions 11-13 hold. If in addition EP [Ds|D−s, V ] a.s.= EP [Ds|V ],∀s ∈

[S], then θ∗ is weakly diagonal sign preserving for the expected change in Y due to D given

V .

Proof. Fix an arbitrary P ∈ P .

By Assumption 13, we have ∀(hs)S
s=1 where hs : V → R that

∑
s=1

EPhs(V )(Ys −ms,θ∗(P )(D, V )) = 0.

Take (hs,P )S
s=1 where hs,P (V ) ≡ EP [Ds|V ],∀s ∈ [S]. Then, by Assumption 13, we have

0 =
∑
s=1

EPDs(Ys −ms,θ∗(P )(D, V )) −
∑
s=1

EPhs,P (V )(Ys −ms,θ∗(P )(D, V ))

=
∑
s=1

EP (Ds − hs,P (V ))(Ys −ms,θ∗(P )(D, V ))

=
∑
s=1

EP (Ds − EP [Ds|V ])(Ys −ms,θ∗(P )(D, V ))

=
∑
s=1

EP (Ds − EP [Ds|D−s, V ])(Ys −ms,θ∗(P )(D, V )),

where the final equality follows from EP [Ds|D−s, V ] a.s.= EP [Ds|V ],∀s ∈ [S] which was as-

sumed to exist in the statement of the corollary.

Since the choice of P ∈ P was arbitrary, this implies that Assumption 10 is satisfied.

Applying Proposition 3 completes the proof.

B Proofs of the Main Results

B.1 Proof of Proposition 1

Take any θ ∈ θ∗(P). Let Pθ ≡ {P ∈ P : θ∗(P ) = θ}. The goal is to show that

Pθ
⋂P++ ̸= ∅ and Pθ

⋂P−− ̸= ∅. The proof constructs a distribution P with strictly negative
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partial effects with respect to D given V such that (a) θ∗(P ) = θ, (b) EP [Y |D, V ] ∈ int(Y) =

(y, y), (c) the support of (D, V ) is D × V . Given this P , it follows that P ∈ Pθ
⋂P−− ̸= ∅.

A distribution with strictly positive partial effects satisfying (a)-(c) can be found using

analogous arguments. I omit the full derivation here to avoid repetition.

B.1.1 Setup

Let Aj
k ≡ mθ(dj, vk), ∀(j, k) ∈ [J ]×[K] and note that Aj

k ∈ (y, y) by Assumption 2. Similarly,

let f j,q
k = f q

θ (dj, vk), hj,q
k = hq

θ(dj, vk), and lj,q
k = lqθ(dj, vk). Let (d′, d′′) be those elements of D

that satisfy Assumption 3, and let (J ′, J ′′) be the corresponding indices, respectively. Fur-

ther, let (v′, v′′, v′′′) be those elements of V that satisfy Assumption 3, and let (K ′, K ′′, K ′′′)

be the corresponding indices, respectively.

To define a distribution P ∈ P−−, I choose values for the corresponding conditional

expectation functions EP [Y |D, V ] and the corresponding joint mass function PrP (D = d, V =

v). I define P as a perturbation of a distribution P̃ ∈ P (not necessarily with strictly

negative/positive partial effects) where g̃j
k ≡ EP̃ [Y |D = dj, V = vk] = Aj

k and where pj
k ≡

PrP̃ (D = dj, V = vk) are arbitrary strictly positive probabilities. By Assumption 2, P̃

satisfies (a)-(b), and by Assumption 1, P̃ satisfies (c).

B.1.2 Construction of P with strictly negative partial effects

The perturbations for P̃ are defined by shifting the values of the conditional expectation

function. In particular, defining gj
k ≡ EP [Y |D = dk, V = vk], consider

gj
k =



g̃j
k + bj

k − r′ + γjϵ = AJ ′
k − r′ + γjϵ if k = K ′

g̃j
k + cj

k − r′′ + γjϵ = AJ ′′
k − r′′ + γjϵ if k = K ′′

g̃j
k + cj

k − r′′′ + γjϵ = AJ ′′
k − r′′′ + γjϵ if k = K ′′′

g̃j
k + cj

k + γjϵ = AJ ′′
k + γjϵ if k ∈ [K] \ {K ′, K ′′, K ′′′},

(11)
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where (r′, r′′, r′′′, γ, ϵ) are numbers that I choose, and cj
k ≡ AJ ′′

k −Aj
k, b

j
k ≡ AJ ′

k −Aj
k,∀(j, k) ∈

[J ] × [K], are given (since θ is fixed). Note for γ = −1, we have

gj+1
k − gj

k = −ϵ, ∀j ≥ 2, k ∈ [K].

Hence, for arbitrary choice of (r′, r′′, r′′′) ∈ R
3 and arbitrary positive ϵ > 0, a joint distri-

bution with conditional expectation values gj
k would correspond to strictly negative partial

effects when γ = −1.14 For the remainder of the proof, I let γ = −1.

B.1.3 Construction of P satisfying θ∗(P ) = θ

In order for P to satisfy θ∗(P ) = θ, P must satisfy the moment conditions given by Assump-

tion 2. Note that P̃ ∈ P constructed previously trivially satisfies the moment conditions —

that is, ∀q ∈ [Q],

0 =
∑
jk

f j,q
k (g̃j

k − Aj
k)pj

k, 0 =
∑
jk

djh
j,q
k (g̃j

k − Aj
k)pj

k, 0 =
∑
jk

xkl
j,q
k (g̃j

k − Aj
k)pj

k, (12)

Solving (11) for g̃j
k results in

g̃j
k =



gj
k − bj

k + r′ + jϵ if k = K ′

gj
k − cj

k + r′′ + jϵ if k = K ′′

gj
k − cj

k + r′′′ + jϵ if k = K ′′′

gj
k − cj

k + jϵ if k ∈ [K] \ {K ′, K ′′, K ′′′}.

(13)

14Similarly, the distribution would have strictly positive partial effects when γ = 1.

38



Substituting into (12) we have

0 =
∑
jk

f j,q
k (gj

k − Aj
k)pj

k

+
∑

j

f j,q
K′ (bj

K′ + r′ + jϵ])pj
K′ +

∑
j

f j,q
K′′(−cj

K′′ + r′′ + jϵ])pj
K′′

+
∑

j

f j,q
K′′′(−cj

K′′′ + r′′′ + jϵ])pj
K′′′ +

∑
j,k ̸∈{K′,K′′,K′′′}

qj,q
k (−cj

k + jϵ)pj
k

0 =
∑
jk

djh
j,q
k (gj

k − Aj
k)pj

k

+
∑

j

djh
j,q
K′(−bj

K′ + r′ + jϵ])pj
K′ +

∑
j

djh
j,q
K′′(−cj

K′′ + r′′ + jϵ])pj
K′′

0 =
∑
jk

vkl
j,q
k (gj

k − Aj
k)pj

k

+ vK′
∑

j

lj,q
K′(−bj

K′ + r′ + jϵ])pj
K′ + vK′′

∑
j

lj,q
K′′(−cj

K′′ + r′′ + jϵ])pj
K′′

+ vK′′′
∑

j

lj,q
K′′′(−cj

K′′′ + r′′′ + jϵ])pj
K′′′ +

∑
j,k ̸∈{K′,K′′,K′′′}

vkl
j,q
k (−cj

k + jϵ)pj
k,

(14)

∀q ∈ [Q]. Clearly, θ∗(P ) = θ if, ∀q ∈ [Q],

0 =
∑

j

f j,q
K′ (bj

K′ + r′ + jϵ])pj
K′ +

∑
j

f j,q
K′′(−cj

K′′ + r′′ + jϵ])pj
K′′

+
∑

j

f j,q
K′′′(−cj

K′′′ + r′′′ + jϵ])pj
K′′′ +

∑
j,k ̸∈{K′,K′′,K′′′}

qj,q
k (−cj

k + jϵ)pj
k

0 =
∑

j

djh
j,q
K′(−bj

K′ + r′ + jϵ])pj
K′ +

∑
j

djh
j,q
K′′(−cj

K′′ + r′′ + jϵ])pj
K′′

0 = vK′
∑

j

lj,q
K′(−bj

K′ + r′ + jϵ])pj
K′ + vK′′

∑
j

lj,q
K′′(−cj

K′′ + r′′ + jϵ])pj
K′′

+ vK′′′
∑

j

lj,q
K′′′(−cj

K′′′ + r′′′ + jϵ])pj
K′′′ +

∑
j,k ̸∈{K′,K′′,K′′′}

vkl
j,q
k (−cj

k + jϵ)pj
k.

(15)

B.1.4 Construction of P such that P ∈ P

As illustrated above, arbitrary choices of (r′, r′′, r′′′), ϵ > 0, and probabilities (pj
k)j,k such that

(15) holds imply that P has strictly negative partial effects and that θ∗(P ) = θ. It remains

to show that such a P exists that also satisfies (b) EP [Y |D, V ] ∈ int(Y) = (y, y), and (c) the
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support of (D, V ) is D ×V . I do so by first writing the solution of (15) in r ≡ (r′, r′′, r′′′)⊤ as

a function of ϵ and the probabilities (pj
k)j,k. Then, I show that this solution in r is arbitrarily

small as ϵ and (pj
k)j,k are taken to be arbitrarily small (but strictly positive) values. (c) then

follows directly from strictly positive (pj
k)j,k, and (b) follows from the fact that ϵ and the

solution in r can be taken to be arbitrarily small so that combining with (11) and the fact

that Aj
k ∈ (y, y) by Assumption 2 delivers the desired result.

For some δ > 0 (that I choose), set pj
k = δ, ∀(j, k) ∈ ([J ]×[K])\{(J ′, K ′), (J ′′, K ′′), (J ′′, K ′′′)}.

Also fix pJ ′
K′ = 1

3 , pJ ′′
K′′ = 1

3 , and so pJ ′
K′′′ = 1

3 − δ(JK − 3), for δ > 0 sufficiently small such

that ∑jk p
j
k = 1.

Rewriting (15) in matrix notation, we have

−∆δ,ϵ = Mδr, (16)

where ∆δ,ϵ ≡
[
∆1,1

δ,ϵ ∆1,2
δ,ϵ ∆1,3

δ,ϵ . . . ∆q,1
δ,ϵ ∆q,2

δ,ϵ ∆q,3
δ,ϵ . . . ∆Q,1

δ,ϵ ∆Q,2
δ,ϵ ∆Q,3

δ,ϵ

]⊤
with

∆q,1
δ,ϵ ≡ ϵJ ′fJ ′,q

K′ pJ ′

K′ + ϵJ ′′fJ ′′,q
K′′ pJ ′′

K′′ + ϵJ ′′fJ ′′,q
K′′′ pJ ′′

K′′′

+
∑
j ̸=J ′

f j,q
K′ (−bj

K′ + jϵ)pj
K′ +

∑
j ̸=J ′′

f j,q
K′′(−cj

K′′ + jϵ)

+
∑

j ̸=J ′′
f j,q

K′′′(−cj
K′′′ + jϵ)pj

K′′′ +
∑

j,k ̸∈{K′,K′′,K′′′}
f j,q

k (−cj
k + jϵ)pj

k,

= ϵ(J
′fJ ′,q

K′

3 + J ′′fJ ′′,q
K′′

3 + J ′′fJ ′′,q
K′′′

3 − δJ ′′fJ ′′,q
K′′′ (JK − 3))

+ δ

( ∑
j ̸=J ′

f j,q
K′ (−bj

K′ + jϵ) +
∑

j ̸=J ′′
f j,q

K′′(−cj
K′′ + jϵ)

+
∑

j ̸=J ′′
f j,q

K′′′(−cj
K′′′ + jϵ) +

∑
j,k ̸∈{K′,K′′,K′′′}

f j,q
k (−cj

k + jϵ)
)
,
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∆q,2
δ,ϵ ≡ ϵdK′J ′hJ ′,q

K′ pJ ′

K′ + ϵdJ ′′J ′′hJ ′′,q
K′′ pJ ′′

K′′ + ϵdJ ′′J ′′hJ ′′,q
K′′′ pJ ′′

K′′′

+
∑
j ̸=J ′

djh
j,q
K′(−bj

K′ + jϵ)pj
K′ +

∑
j ̸=J ′′

djh
j,q
K′′(−cj

K′′ + jϵ)

+
∑

j ̸=J ′′
djh

j,q
K′′′(−cj

K′′′ + jϵ)pj
K′′′ +

∑
j,k ̸∈{K′,K′′,K′′′}

djh
j,q
k (−cj

k + jϵ)pj
k,

= ϵ(dJ ′J ′hJ ′,q
K′

3 + dJ ′′J ′′hJ ′′,q
K′′

3 + dJ ′′J ′′hJ ′′,q
K′′′

3 − δJ ′′dJ ′′hJ ′′,q
K′′′ (JK − 3))

+ δ

( ∑
j ̸=J ′

djh
j,q
K′(−bj

K′ + jϵ) +
∑

j ̸=J ′′
djh

j,q
K′′(−cj

K′′ + jϵ)

+
∑

j ̸=J ′′
djh

j,q
K′′′(−cj

K′′′ + jϵ) +
∑

j,k ̸∈{K′,K′′,K′′′}
djh

j,q
k (−cj

k + jϵ)
)
,

∆q,3
δ,ϵ ≡ ϵvK′J ′lJ

′,q
K′ pJ ′

K′ + ϵvK′′J ′′lJ
′′,q

K′′ pJ ′′

K′′ + ϵvK′′′J ′′lJ
′′,q

K′′′ pJ ′′

K′′′

+ vK′
∑
j ̸=J ′

lj,q
K′(−bj

K′ + jϵ)pj
K′ + vK′′

∑
j ̸=J ′′

lj,q
K′′(−cj

K′′ + jϵ)

+ vK′′′
∑

j ̸=J ′′
lj,q
K′′′(−cj

K′′′ + jϵ)pj
K′′′ +

∑
j,k ̸∈{K′,K′′,K′′′}

vkl
j,q
k (−cj

k + jϵ)pj
k,

= ϵ(vK′J ′lJ
′,q

K′

3 + vK′′J ′′lJ
′′

K′′

3 + vK′′′J ′′lJ
′′,q

K′′′

3 − δJ ′′vK′′′lJ
′′,q

K′′′ (JK − 3))

+ δ

(
vK′

∑
j ̸=J ′

lj,q
K′(−bj

K′ + jϵ) + vK′′
∑

j ̸=J ′′
lj,q
K′′(−cj

K′′ + jϵ)

+ vK′′′
∑

j ̸=J ′′
lj,q
K′′′(−cj

K′′′ + jϵ) +
∑

j,k ̸∈{K′,K′′,K′′′}
vkl

j,q
k (−cj

k + jϵ)
)
,

where I used that bJ ′
K′ = 0, cJ ′′

K′′ = cJ ′′
K′′ = 0. Further, Mδ is an 3Q× 3 matrix

Mδ ≡
[
M1,1

δ M1,2
δ M1,3

δ . . . M q,1
δ M q,2

δ M q,3
δ . . . MQ,1

δ MQ,2
δ MQ,3

δ

]⊤

with

M q,1
δ ≡


fJ ′,q

K′ pJ ′
K′ +∑

j ̸=J ′ f j,q
K′p

j
K′

fJ ′′,q
K′′ pJ ′′

K′′ +∑
j ̸=J ′′ f j,q

K′′p
j
K′′

fJ ′′,q
K′′′ pJ ′′

K′′′ +∑
j ̸=J ′′ f j,q

K′′′p
j
K′′′

 =


fJ′,q

K′
3 + δ

∑
j ̸=J ′ f j,q

K′

fJ′′,q

K′′
3 + δ

∑
j ̸=J ′′ f j,q

K′′

fJ′′,q

K′′′
3 + δ(∑j ̸=J ′′ f j,q

K′′′ + fJ ′′,q
K′′′ (3 − JK))

 ,
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M q,2
δ ≡


dJ ′hj,q

K′pJ ′
K′ +∑

j ̸=J ′ djh
j,q
K′p

j
K′

dJ ′′hJ ′′,q
K′′ pJ ′′

K′′ +∑
j ̸=J ′′ djh

j,q
K′′p

j
K′′

dJ ′′hJ ′′,q
K′′′ pJ ′′

K′′′ +∑
j ̸=J ′′ djh

j,q
K′′′p

j
K′′′

 =


dJ′ h

j,q

K′
3 + δ

∑
j ̸=J ′ djh

j,q
K′

dJ′′ h
J′′,q

K′′
3 + δ

∑
j ̸=J ′′ djh

j,q
K′′

dJ′′ h
J′′,q

K′′′
3 + δ(∑j ̸=J ′′ djh

j,q
K′′′ + dJ ′′hJ ′′,q

K′′′ (3 − JK))

 ,

M q,3
δ ≡


vK′(lJ

′,q
K′ pJ ′

K′ +∑
j ̸=J ′ lj,q

K′p
j
K′)

vK′′(lJ
′′,q

K′′ pJ ′′
K′′ +∑

j ̸=J ′′ lj,q
K′′p

j
K′′)

vK′′′(lJ
′′,q

K′′′ pJ ′′
K′′′ +∑

j ̸=J ′′ lj,q
K′′′p

j
K′′′)

 =


vK′ l

J′,q

K′
3 + δvK′

∑
j ̸=J ′ lj,q

K′

vK′′ l
J′′,q

K′′
3 + δvK′′

∑
j ̸=J ′′ lj,q

K′′

vK′′′ l
J′′,q

K′′′
3 + δvK′′′(∑j ̸=J ′′ lj,q

K′′′ + lJ
′′,q

K′′′ (3 − JK))

 .

Now note that

lim
δ→+0

Mδ ≡ M =
[
M

1,1
M

1,2
M

1,3
. . . M

q,1
M

q,2
M

q,3
. . . M

Q,1
M

Q,2
M

Q,3
]⊤

where

M
q,1 ≡ 1

3


fJ ′,q

K′

fJ ′′,q
K′′

fJ ′′,q
K′′′

 , M
q,2 ≡ 1

3


dJ ′hJ ′,q

K′

dJ ′′hJ ′′,q
K′′

dJ ′′hJ ′′,q
K′′′

 , M
q,3 ≡ 1

3


vK′lJ

′,q
K′

vK′′lJ
′′,q

K′′

vK′′′lJ
′′,q

K′′′

 .

By Assumption 3, it thus follows that M has full column-rank so that limδ→+0 M
⊤
δ Mδ =

M
⊤
M is non-singular. Hence, by continuity of ∥·∥ and continuity of the inverse, limδ→+0 ∥(M⊤

δ Mδ)−1∥ =

O(1).

Further, note that lim(ϵ,δ)→+(0,0) M
⊤
δ ∆δ,ϵ = 0. Combining, it then follows that

lim
(ϵ,δ)→+(0,0)

|(M⊤
δ Mδ)−1M⊤

δ ∆δ,ϵ| ≤ lim
(ϵ,δ)→+(0,0)

∥(M⊤
δ Mδ)−1∥∥M⊤

δ ∆δ,ϵ∥2

=O(1)
∥∥∥∥∥ lim

(ϵ,δ)→+(0,0)
M⊤

δ ∆δ,ϵ

∥∥∥∥∥
2

= 0,

where the first inequality follows from Cauchy-Schwarz.

It then follows from (16) that r = (r′, r′′, r′′′) can be made arbitrarily close to 0 by

choosing (ϵ, δ) > 0 sufficiently small as desired. This concludes the proof.
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B.2 Proof of Lemma 1

Fix an arbitrary P ∈ P . Note that for D = {d1, . . . , dJ}, we can write

EP [Y |D, V ] = EP [Y |D = d1, V ] +
D∑

j=2
∆j

P (V ),

where ∆j
P (V ) ≡ EP [Y |D = dj, V ] − EP [Y |D = dj−1, V ]. Similarly, ∀θ ∈ Θ,

mθ(D, V ) = mθ(d1, V ) +
D∑

j=2
∆j

θ(V ),

where ∆j
θ(V ) ≡ mθ(dj, V ) −mθ(dj−1, V ).

Let θ = θ∗(P ). By Assumption 4, we then have

0 = EP (D − EP [D|V ])(Y −mθ∗(P )(D, V ))

= EP (D − EP [D|V ])
(
EP [Y |D = d1, V ] −mθ∗(P )(d1, V )

)
+ EP (D − EP [D|V ])

D∑
j=2

(
∆j

P (V ) − ∆j
θ∗(P )(V )

)
[1]= EP EP [(D − EP [D|V ])|V ]

(
EP [Y |D = d1, V ] −mθ∗(P )(d1, V )

)
+

J∑
j=2

EP (D − EP [D|V ])1{dj ≤ D}
(
∆j

P (V ) − ∆j
θ∗(P )(V )

)
[2]=

J∑
j=2

EP EP [(D − EP [D|V ])1{dj ≤ D}|V ]
(
∆j

P (V ) − ∆j
θ∗(P )(V )

)
,

where [1] and [2] follow from the law of iterated expectations. As a consequence,

J∑
j=2

EP ∆j
P (V )ωP (j, V ) =

J∑
j=2

EP ∆j
θ∗(P )(V )ωP (j, V ),

where, ∀j ∈ [J ] \ 1,

ωP (j, V ) ≡ EP [(D − EP [D|V ])1{dj ≤ D}|V ]

= (EP [D|D ≥ dj, V ] − EP [D|D < dj, V ]) Pr(D ≥ dj|V ) Pr(D < dj|V )
a.s.
≥ 0.

Since the choice of P ∈ P was arbitrary, this concludes the proof.
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B.3 Proof of Proposition 2

Fix an arbitrary P ∈ P . Note that Lemma 1 applies by Assumption 4. By Assumption

5, mθ(P ) is monotone in D given V , so that the right hand side of (4) is either a positively

weighted sum of weakly negative terms or a positively weighted sum of weakly positive terms.

Hence, the sign of the right hand side (weakly) determines the sign of all terms in the sum.

Now, if P ∈ P+, then Lemma 1 implies

0 ≤
J∑

j=2
EP [(mθ(dj, V ) −mθ(dj−1, V ))ωP (j, V )] .

Hence, because ωP (j, V )
a.s.
≥ 0, monotonicity implies

mθ∗(P )(d′, V )
a.s.
≥ mθ∗(P )(d′, V ), ∀d′ ≥ d ∈ D.

Analogous arguments imply that if P ∈ P−, then

mθ∗(P )(d′, V )
a.s.
≤ mθ∗(P )(d′, V ), ∀d′ ≥ d ∈ D.

Since the choice of P ∈ P was arbitrary, this concludes the proof.

B.4 Proof of Corollaries 1-3

B.4.1 Proof of Corollary 1

Fix an arbitrary P ∈ P . By Assumption 6, we have ∀γ ∈ R|V| that EPV
⊤γ(Y−mθ∗(P )(D, V )) =

0. Take γP satisfying EP [D|V ] a.s.= V ⊤γP which exists by linearity of EP [D|V ]. Then, by As-

sumption 6, we have

0 = EPD(Y −mθ∗(P )(D, V )) − EPV
⊤γP (Y −mθ∗(P )(D, V ))

= EP (D − V ⊤γP )(Y −mθ∗(P )(D, V ))

= EP (D − EP [D|V ])(Y −mθ∗(P )(D, V )).
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Since the choice of P ∈ P was arbitrary, this implies that Assumption 4 is satisfied.

Applying Proposition 2 completes the proof.

B.4.2 Proof of Corollary 2

The proof uses similar arguments as the previous proof and is included here for completeness.

Fix an arbitrary P ∈ P . By Assumption 7, we have EPh(V )(Y −mθ∗(P )(D, V )) = 0 for

all L2-integrable h : V → R. Take hP (V ) ≡ EP [D|V ]. Then, by Assumption 7, we have

0 = EPD(Y −mθ∗(P )(D, V )) − EPhP (V )(Y −mθ∗(P )(D, V ))

= EP (D − hP (V ))(Y −mθ∗(P )(D, V ))

= EP (D − EP [D|V ])(Y −mθ∗(P )(D, V )).

Since the choice of P ∈ P was arbitrary, this implies that Assumption 4 is satisfied.

Applying Proposition 2 completes the proof.

B.5 Proof of Corollary 3

The proof uses similar arguments as the proof of Proposition 2 and Corollary 2 and is

included here for completeness.

By Assumption 8, we have EP [h(V )(Y − mθ∗(P )(D, V ))|V ] a.s.= 0, for all L2-integrable

h : V → R and P ∈ P . Take hP (V ) ≡ EP [D|V ], then by Assumption 8, we have

0 = EP [D(Y −mθ∗(P )(D, V ))|V ] − EP [hP (V )(Y −mθ∗(P )(D, V ))|V ]

= EP [(D − EP [D|V ])(Y −mθ∗(P )(D, V ))|V ], ∀P ∈ P .
(17)

I continue with proving a simple intermediate lemma analogous to Lemma 1.
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Lemma 4. Suppose that the estimand θ∗ : P → Θ is unique and satisfies (17), ∀P ∈ P.

Then, ∀P ∈ P , v ∈ V,

J∑
j=2

(EP [Y |D = dj, V = v] − EP [Y |D = dj−1, V = v])ωP (j, v)

=
J∑

j=2
(mθ(dj, v) −mθ(dj−1, v))ωP (j, v),

(18)

where ωP (j, V ) is defined as in Lemma 1.

Proof. Fix an arbitrary P ∈ P . Also fix an arbitrary v ∈ V . Now let Pv denote the

joint distribution of (Y,D)|V = v. Replacing P with Pv in the proof of Lemma 1, as well as

replacing references to Assumption 4 with references to (17), then gives the desired result.

To finish the proof of Corollary 3, fix an arbitrary P ∈ P±, v ∈ V . Note that Lemma 4

applies. By Assumption 5, mθ∗(P ) is monotone in D given V , so that the right hand side of

(18) is either a positively weighted sum of weakly negative terms or a positively weighted

sum of weakly positive terms. Hence, the sign of the right hand side (weakly) determines

the sign of all terms in the sum.

Now, if v ∈ V+, then Lemma 4 implies

0 ≤
J∑

j=2
(mθ(dj, v) −mθ(dj−1, v))ωP (j, v).

Hence, because ωP (j, v) ≥ 0, monotonicity implies

mθ∗(P )(d′, v) ≥ mθ∗(P )(d′, v), ∀d′ ≥ d ∈ D.

Analogous arguments imply that if v ∈ V−, then

mθ∗(P )(d′, v) ≤ mθ∗(P )(d′, v), ∀d′ ≥ d ∈ D.

Since the choice of P ∈ P± and v ∈ V was arbitrary, this concludes the proof.
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B.6 Proof of Lemma 2

Note that, ∀d′, d ∈ D,

CATEd′,d
P (V ) = EP [g(d′, U)|V ] − EP [g(d, U)|V ]

= EP [g(D,U)|D = d′, V ] − EP [g(D,U)|D = d, V ]

= EP [Y |D = d′, V ] − EP [Y |D = d, V ],

where the equalities follow from Assumption 9. Substituting the final expression for CATEd′,d
P (V )

in (a)-(c) gives the desired results.
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