
Introduction to Statistical Programming with R

Aileen Brown Cuevas
Thomas Wiemann
University of Chicago

July 29, 2021

Outline

1. Statistical Programming

2. Why use R

3. Getting started
I Base R
I R Studio
I Jupyter Notebooks

4. Version Control
I Overview
I Git with GitHub
I Sample Problem Set Repository
I Best Practices
I Optional Homework

Brown Cuevas & Wiemann Statistical Programming with R 2/19

Statistical Programming
Statistical programming may be defined as the implementation of
statistical procedures and statistical analyses on a computer.

To do so efficiently, the choice of the right tool (i.e., programming
language) for the problem at hand is crucial. Four distinctions are
particularly relevant:

I high-level languages (more human readable, less control) vs low-level
languages (less human readable, more control)

I domain languages (optimized for specific tasks) vs general-purpose
languages (suitable for large variety of tasks)

I availability of packages

I open-source/free vs proprietary/commercial

For statistical programming, this leaves us with C/C++ for low-level
high-performance code, and R, Python, and Julia for higher level code.

Brown Cuevas & Wiemann Statistical Programming with R 3/19

Why use R
Pros:
I It’s free, open source, and available on every major platform.
I Widely used and sought-after language (e.g., see IEEE Spectrum)
I Large and incredibly helpful community (e.g., see Chadley Wickham)
I Excellent availability of data manipulation and visualization

packages (e.g., dplyr, ggplot2).
I Possible to connect to low-level programming languages such as

C++ (e.g., Rcpp).
I Thousands of packages designed and maintained by statisticians.

Lot’s of cutting-edge methods implemented in R.

Cons:
I Thousands of packages designed and maintained by statisticians.

We’re not professional programmers – code often messy.
I Easy to write, difficult to perfect. Naive code can turn out slow.
I Can be very memory intensive.
I Advanced numerical optimization methods largely missing.

Brown Cuevas & Wiemann Statistical Programming with R 4/19

Programming Pluralism

Source: https://twitter.com/VC31415/status/1373402880280047617

Takeaway: use the most convenient tool for the project at hand.
Brown Cuevas & Wiemann Statistical Programming with R 5/19

https://twitter.com/VC31415/status/1373402880280047617

Getting started: Base R

Download & install R: https://cran.rstudio.com/

Rough! Better use a integrated development environment (IDE).

Brown Cuevas & Wiemann Statistical Programming with R 6/19

https://cran.rstudio.com/

Getting started: IDEs

Most popular IDE for R is R Studio:
I Designed specifically for R.
I Project management and integrated version control.
I Debugging support.
I Integrated R Markdown.

A sometimes convenient alternative to R Markdown is a Jupyter
Notebook, especially if you’re familiar with Jupyter Notebooks through
working with Python or Julia. (Note: Ju-Py-[t]-R)

Personally, I do 99% of R coding in R Studio and 1% in Jupyter
Notebooks.

Brown Cuevas & Wiemann Statistical Programming with R 7/19

Getting started: R Studio
Download & install R Studio:
https://rstudio.com/products/rstudio/download

To change visual appearance, use Tools→Global Options→Appearance and change the editor theme (here: Chaos).

Brown Cuevas & Wiemann Statistical Programming with R 8/19

https://rstudio.com/products/rstudio/download

Getting started: Jupyter Notebooks for R

I Download & install Anaconda:
https://www.anaconda.com/products/individual

I Install R kernel via Anaconda prompt

I Open Jupyter Notebook and select the R kernel

Brown Cuevas & Wiemann Statistical Programming with R 9/19

https://www.anaconda.com/products/individual

Getting started: Jupyter Notebooks for R (Contd.)
Jupyter Notebooks are a browser-based application and so will open in
Chrome, Firefox, etc.

They are particularly useful for sharing output scripts that include brief
sections of code and lots of explanation.

Brown Cuevas & Wiemann Statistical Programming with R 10/19

Version Control: Overview

A key feature of any editor is the UNDO operator (e.g., ctrl + z).
Intuitively, a version control system is a sophisticated UNDO operator.

Working with version control allows you to
I track changes in your code;
I compare different versions of your code;
I rebuild your code as it existed at any prior point.

Invaluable for debugging and collaboration!

A particularly popular version control system is Git. It’s free, available on
all major operating systems, and widely supported by free hosting
websites (e.g., GitHub). R Studio also has a Git integration.

Brown Cuevas & Wiemann Statistical Programming with R 11/19

Version Control: Git with GitHub
GitHub is a free hosting website for code. Excellent for sharing code (like
problem sets). Lots of software packages are hosted on GitHub.

Installation:
1. Sign-up for GitHub: www.github.com

2. Download the GitHub desktop app: https://desktop.github.com

3. After installation, open GitHub app and sign-in with your account.

We’re now ready to start our first repository!
Brown Cuevas & Wiemann Statistical Programming with R 12/19

www.github.com
https://desktop.github.com

Sample problem set repository

(a) File→Add→Create new... (b) Name appropriately

(c) “publish” repository (d) Decide whether to keep private

Brown Cuevas & Wiemann Statistical Programming with R 13/19

Sample problem set repository (Contd.)

After initialization, the repository contains only the bare essentials.

Before adding code, it’s useful to organize the repository for a clean
workflow. For a problem set repository, it’s often convenient to have
separate folders for data, results, and complementary code (here:
mymethods).

Brown Cuevas & Wiemann Statistical Programming with R 14/19

Sample problem set repository (Contd.)
Let’s now add our first R script. As an example for a problem set,
Problem Set 0.R provides a basic simulation exercises for the law of
large numbers and the central limit theorem.

The file should be stored directly in the repository (i.e., it’s filepath should
look something like: “∼/GitHub/Econ-21020/Problem Set 0.R”).

Brown Cuevas & Wiemann Statistical Programming with R 15/19

Sample problem set repository (Contd.)

(a) Add brief description and commit (b) “Push” to upload to GitHub

(c) Repository immediately updated... (d) ... but all versions backed-up

Brown Cuevas & Wiemann Statistical Programming with R 16/19

Sample problem set repository (Contd.)

Particularly useful: line-by-line comparisons between different versions of
the repository.

Brown Cuevas & Wiemann Statistical Programming with R 17/19

Best Practices

Getting used to version control and GitHub can take some time. A few
best practices may help you get started. (Note that these are not
universal guidelines and depend on the project, but it’s a good set of
rules for homework repositories.)

I Commit recent changes after completing a logical step (e.g.,
finishing an exercise). This should be done relatively frequently.

I Always add a brief description to your commit.
I Upload to GitHub each time you stop working on your project.
I Avoid uploading large files. Small data sets are fine, large data sets

may need to be stored locally.
I When collaborating, “push” and “pull” frequently.

As a student at UChicago, you qualify for GitHub pro. Comes with a few
benefits, including unlimited collaborators on private repositories. Link:
https://education.github.com/benefits?type=student.

Brown Cuevas & Wiemann Statistical Programming with R 18/19

https://education.github.com/benefits?type=student

Optional Homework
Exercise: setup a problem set repository for this course.

To do so, complete the following steps:
1. Download and install R.
2. Download and install R Studio.
3. Create a GitHub account.
4. Download and install the GitHub desktop application.
5. Create a new public repository with the name Econ-21020 and

publish it to GitHub.
6. Add a single R script called hello world.R. The file should contain

the following code: print(‘hello, world!’).
7. Commit your changes to the repository and ‘push’ to GitHub.
8. Copy the link of the repository and include it in your next problem

set. The link should look something like this (but of course with
your username): www.github.com/thomaswiemann/Econ-21020.

All necessary instructions can be found in this slide deck.
Brown Cuevas & Wiemann Statistical Programming with R 19/19

www.github.com/thomaswiemann/Econ-21020

Introduction to Statistical Programming with R
(Part. II)

Aileen Brown Cuevas
Thomas Wiemann
University of Chicago

July 29, 2021

Outline

1. Data Types

2. Operators

3. Functions

4. Documentation

5. Style Guide

6. Coding in R Studio

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 2/35

Data Types

The simplest kind of variables in R are atomic types. These do not have
an internal structure. Examples are:
I integer: 1L, 2L, 42L, . . .
I numeric: pi, 0.25, Inf, . . .
I logical: TRUE, FALSE.
I character: "lorem ipsum", "a", "", . . .

More complex data types are combinations of atomic types. It’s useful to
organize the most common data types based on their dimensionality and
whether they are homogeneous (i.e., whether all of it’s contents must be
of the same type).

Homogeneous Heterogeneous

1d Atomic vector List
2d Matrix Data frame
nd Array

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 3/35

Data Types: Atomic vectors
Atomic vectors are usually created with c(), short for combine. Even
when nesting, atomic vectors are always flat.

R does not have any scalar variables. Single numbers or characters are
vectors of length 1. Vectors of length 0 also exist (and are a common
cause for bugs).

Example: Atomic vectors�
c(1L, c(2L, c(3L, 4L))) # integer
#> [1] 1 2 3 4

c(1, 2, 3, 4) # numeric
#> [1] 1 2 3 4

c(T, F) # logical
#> [1] TRUE FALSE

c("these␣are", "some␣strings") # character
#> [1] "these are" "some strings"
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 4/35

Data Types: Factors

Another fundamental data type that is essentially a vector with attributes
is factor. These are used to store categorical and ordinal variables.

Factor variables can easily be initialized from an existing vector by using
factor().

Example: Factors�
factor(c("red", "blue", "green", "red", "green"))
#> [1] red blue green red green
#> Levels: blue green red

factor(c(1, 2, 1, 2, 3))
#> [1] 1 2 1 2 3
#> Levels: 1 2 3
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 5/35

Data Types: Matrices
A two-dimensional collection of atomic vectors is a matrix. They are
convenient for storing and manipulating data with linear algebra.

Matrices are easily initialized with matrix(). Note that R uses
column-wise initialization of matrices. Vectors (or matrices) of
appropriate dimension may also be combined via row- or
column-concatenation using rbind() or cbind().

Example: Matrices�
matrix(c(1, 2, 3, 4), ncol = 2, nrow = 2)
#> [, 1] [, 2]
#> [1,] 1 3
#> [2,] 2 4

cbind(c(1, 2), c(3, 4))
#> [, 1] [, 2]
#> [1,] 1 3
#> [2,] 2 4
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 6/35

Data Types: Arrays

The n-dimensional generalization of matrix is called array. They are
much less common but it’s good to be aware of them.

Use array() for initialization.

Example: Arrays�
array(c(1:8), dim = c(2, 2, 2))
#> , , 1
#> [, 1] [, 2]
#> [1,] 1 3
#> [2,] 2 4
#>
#> , , 2
#> [, 1] [, 2]
#> [1,] 5 7
#> [2,] 6 8
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 7/35

Data Types: Lists

A list is a 1-dimensional data type with elements of arbitrary type.
Note that this is their key difference to atomic vectors.

Use list() for initialization (instead of c()).

Example: Lists�
list (1:3, "a", TRUE , 1L)
#> [[1]]
#> [1] 1 2 3
#>
#> [[2]]
#> [1] "a"
#>
#> [[3]]
#> [1] TRUE
#>
#> [[4]]
#> [1] 1
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 8/35

Data Types: Data frames

Data frames are the most common way of storing data in R. Essentially,
a data frame is a list of equal-length vectors. Given this construction, it
shares some properties of both the matrix and the list, which can be very
convenient for data analysis.

Use data.frame() for initialization. Multiple data frames (of
appropriate dimension) may be concatenated via rbind() or cbind().

Example: Data frames�
data.frame(x = 2:4, y = c("a", "b", "c"))
#> x y
#> 1 2 a
#> 2 3 b
#> 3 4 c
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 9/35

Data Types: Which one to choose?

Sometimes the data gives you little choice in the data structure. More
often than not, however, you have to make the decision. Doing so
incorrectly can have noticeable consequences. Poor choices can make
your code needlessly complicated, slow, and memory-intensive.

As a simple guideline for the choice between data frames and matrices,
consider how linear algebra intensive your code is. If you’re using linear
algebra operations frequently, use a matrix instead of a data frame.

For advanced projects (outside the scope of this course), also consider
other data structures provided by R packages (e.g., data.table, sparse
matrices).

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 10/35

Operators

Operators are convenient shortcuts to many of the key operations that
frequently arise in data analysis. The key groups of operators are

I Assignment operators

I Arithmetic operators

I Relational operators

I Logical operators

I Subsetting operators

We’ll discuss each briefly and conclude with a note on operator
preference.

(There are also two linear algebra operators. We’ll turn to them later.)

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 11/35

Operators: Assignment
Assignment associates an internal object (e.g., a vector of integers) with
a variable in your code. The key assignment operator in R is “<-”. It’s
not the only one – but it’s the only one you should use.

There are other assignment operators you may sometimes see in other’s
code. “=” is identical to “<-” and both deal with local assignment. The
global assignment operator in R is “<<-”.

Assignment: Assignment Operators�
x <- c(1, 2)
x # print(x)
#> [1] 1 2

y <- cbind(x, x)
y # print(y)
#> [, 1] [, 2]
#> [1,] 1 1
#> [2,] 2 2
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 12/35

Operators: Arithmetic

The familiar arithmetic operators are implemented with their usual
symbols. In particular, “+” is addition, “-” is subtraction, “*” is
multiplication, “/” is division, and “ˆ” is the exponent operator. There
are two other useful operators: “%%” calculates the modulus and “%/%”
calculates integer division.

Note that these operations are element-wise! R is vectorized.

Example: Arithmetic Operators�
c(1, 2, 3, 4) + 1
#> [1] 2 3 4 5

c(1, 2, 3, 4) * c(1, 2, 3, 4)
#> [1] 1 4 9 16

c(3, 4, 5, 6) %% 3
#> [1] 0 1 2 0
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 13/35

Operators: Relational

Relational operators are very convenient for generation of logical
variables. In R, the key relational operators are the familiar “greater
than” and “smaller than” operators – “>” and “<” – as well as their weak
extensions – “>=” and “<=”. Equality is indicated by a double equality
sign: “==”. Not-equal is using the negation operator: “!=”.

As before: these operations are element-wise!

Example: Relational Operators�
x <- 1
y <- x + 1
c(y < x, y <= x, y != x)
#> [1] FALSE FALSE TRUE

(c(3, 4, 5, 6) %% 3) == 0
#> [1] TRUE FALSE FALSE TRUE
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 14/35

Operators: Logical
Logical operators are convenient for aggregating logical variables. Here,
“&” is element-wise logical-and, and “|” is element-wise logical-or. The
negation operator is “!”.

In addition to the element-wise logical operators, there are also
non-element-wise alternatives – “&&” and “||”. Both only evaluate the
first logical variable. Be cautious when using them.

Example: Logical Operators�
!(c(TRUE , FALSE) & TRUE)
#> [1] FALSE TRUE

x <- 1
y <- x + 1
(y < x - 1) | (y > x)
#> [1] TRUE

(c(1, 2, 3, 4) == c(1, 5, 5, 5)) && (x == 1)
#> [1] TRUE
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 15/35

Operators: Subsetting

Subsetting allows you to retrieve and manipulate parts of your data
structure. This is crucial for succinctly expressing complex operations.

R has three subsetting operators:
I [for vectors, matrices, arrarys, and data frames
I [[for lists
I $ for named lists and data frames

Example: Subsetting Operators�
df <- data.frame(x = 2:4, y = c("a", "b", "c"))
df[, 1]
#> [1] 2 3 4

df[, 1] == df[, "x"] & df[, 1] == df$x
#> [1] TRUE TRUE TRUE
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 16/35

Operators: Precedence

Precedence rules for operators can be complicated. Rather than memorize
these rules and risk confusion, use parentheses to avoid ambiguity.

Example: Operator Precedence�
TRUE || FALSE == FALSE || FALSE
#> [1] TRUE

(TRUE || FALSE) == (FALSE || FALSE)
#> [1] FALSE

TRUE || (FALSE == FALSE) || FALSE
#> [1] TRUE
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 17/35

Functions
Functions are a fundamental building block of R: Anything that
“happens” is the result of a function call.

Much like it’s mathematical equivalent, a function takes some inputs
(called arguments) and returns an output. In R, a function can only
return a single object (e.g., a vector or a list).

Writing your own functions is – thankfully – incredibly easy. If you catch
yourself copy-pasting lines of code, consider writing your own function
and calling it instead.

Example: Custom Functions�
myplus <- function(x, y) {

res <- x + y
return(res)

}#MYPLUS

myplus(1, 2) == (1 + 2)
#> [1] TRUE
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 18/35

Functions

Base R implements many key functions for data analysis. Being familiar
with them is important for efficient programming.

Some of the key function groups are:

I Distributional functions

I Statistical functions

I Logical functions

I Linear Algebra

I Importing and Exporting Data

We’ll briefly go over each now.

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 19/35

Functions: Distributions
The four key distributional functions we need are
I the probability density (mass) function,
I the cumulative density (mass) function,
I the quantile function,
I the sampling function for generating random draws.

R implements these for all standard distributions with the same pattern:

(d, p, q, r) * (binom, chisq, exp, f, norm, t, unif)

where d denotes the pdf (pmf), p denotes the CDF (CMF), q denotes
the quantile function, and r denotes the sampling function.

binom denotes the binomial distribution, chisq denotes the
χ2-distribution, exp denotes the exponential distribution, f denotes the
F-distribution, norm denotes the normal distribution, t denotes the
t-distribution, and unif denotes the uniform distribution.

(Note: There are many other distributions implemented in R!)
Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 20/35

Functions: Sample Statistics
Sample statistics are functions of the observed data. They are useful for
summarizing key features of the data.

Particularly useful functions are:
I sum, mean, sd, var
I cov, cor
I quantile
I table

Example: Sample Statistics�
x <- rexp(n = 100000 , rate = 2) # E[X] = 1/2
mean(x)
#> [1] 0.501

x <- rnorm(n = 10000 , mean = 0, sd = 1)
quantile(x = x, probs = c(0.025 , 0.975))
#> 2.5% 97.5%
#> -1.967 1.947
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 21/35

Functions: Sample Statistics (Contd.)

In the example below, we test the fairness of an unfair coin given a
sample of n = 100 observations. Recall that a binomial random variable
with 1 trial is simply a Bernoulli random variable.

Example: Test fairness of a coin flip�
Simulate data from Bernoulli s.t. E[X] = 0.6.
That is, the coin is unfair!
n <- 100
x <- rbinom(n = n, size = 1, prob = 0.6)

Calculate test statistic for H_0: E[X] = 0.5.
z <- sqrt(n) * (mean(x) - 0.5) / sd(x)

Conduct two sided test using the CLT.
2 * pnorm(q = -abs(z), mean = 0, sd = 1)
#> [1] 0.002
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 22/35

Functions: Linear Algebra
Linear algebra is incredibly useful for econometrics and statistics – both
for theory and for implementation.

The key functions are
I the transpose function: t
I the inverse function: solve
I matrix multiplication: %*%
I out product: %o%

Implementing linear regression from scratch has never been so easy!
Recall β̂ols =

(
X>X

)−1 X>y .

Example: Linear Algebra�
myols <- function(y, X) {

beta <- solve(t(X) %*% X) %*% (t(X) %*% y)
return(beta)

}#MYOLS
� �
Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 23/35

Functions: Logical functions
The key logical functions are
I any
I all
I which

Two others that are sometimes convenient are which.min and
which.max.

Example: Logical Functions�
x <- c(TRUE , FALSE , TRUE)
any(x)
#> [1] TRUE

all(x)
#> [1] FALSE

which(x)
#> [1] 1 3
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 24/35

Functions: Importing and Exporting Data
Here we discuss importing and exporting comma separated values-files
(i.e., csv-files). This can easily be done with read.csv and write.csv.

There are many R packages for importing other file formats. See, e.g.,
readstata13, haven, etc.

Example: Importing and Exporting Data�
Simulate some data
n <- 100
df <- data.frame(x = rnorm(n, 0, 1),

y = rbinom(n, 1, 0.6))

Export to .csv
write.csv(df, file = "my_simulated_data.csv",

row.names = FALSE)

Import from .csv
df_2 <- read.csv(file = "my_simulated_data.csv")
head(df_2$y) # prints first 5 entries
#> [1] 0 1 0 1 1
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 25/35

Functions: Packages
Base R is great (and you should use it) but there are excellent extensions
available in the form of packages.

Official packages are hosted on CRAN. These packages are well
maintained and have to adhere to certain quality standards. Examples
are ggplot2 for plotting or dyplr for data manipulation.

In-official packages (or development versions) are often hosted on GitHub.
Using the package devtools, these can be directly installed as well.

After installation, packages need to be activated each time you want to
use them. This is done via library.

Example: Installing Packages�
CRAN packages
install.packages(c("ggplot2", "dyplr", "devtools"))

GitHub package
library(devtools)
install _github("jkcshea/l1svr") # needs devtools
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 26/35

Documentation
Before calling a function, it’s important you familiarize yourself with the
syntax and default arguments. The perfect resource for this are the R
help files. These can be conveniently accessed via the “?” operator.

The following is a screenshot from the output after calling ?rnorm.

Other helpful resources are Google, Stack Overflow, Stack Exchange, etc.
Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 27/35

Style-Guide

“Good coding style is like using correct punctuation. You can manage
without it, but it sure makes things easier to read.” – Wickham (2019)

Adopting (and adapting) a so-called style guide is the better alternative
to re-inventing punctuation from scratch. The following gives a few
highlights from the tidyverse style guide
(https://style.tidyverse.org/).

We focus on:
I Naming
I Spacing
I Comments
I Sections

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 28/35

https://style.tidyverse.org/

Style-Guide: Naming

Coming up with good variable names can be challenging!

I Variable and function names should be in lowercase.
I Use an underscore to separate words withing a name.
I Variable names should be nouns and function names should be verbs.
I Strive for names that are clear and concise.

Example: Variable names�
Good
sample _mean_x <- mean(x)
avg_x <- mean(x)

Bad
SampleMean_1 <- mean(x)
avgx <- mean(x)
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 29/35

Style-Guide: Spacing

I Place spaces around all infix operators (=, +, -, <-, etc.). The
exception is “:”, which should be used without spaces.

I Always put a space after a comma, and never before.
I Place spaces before left parentheses, except in a function call.
I Don’t add space within parentheses.

Example: Spacing�
Good
x <- 1:10
if (1 %in% x) print("Wow!")
x <- c(x, x)

Bad
x <- 1 : 10
if(1%in%x)print("Wow!")
x <- c (x , x)
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 30/35

Style-Guide: Comments
I Use # to add a comment.
I Comment frequently but not excessively.
I For multi-line comments, add four spaces at the beginning of each

line after the first one.

Important: Limit your code to 80 characters per line. Many IDEs add a
vertical line to help with this.

Example: Multi-line comment�
Commenting code is important. Be concise. When
necessary , use indentation to increase
readability.
� �

Example: Simple comment�
x <- 1
x <- x + 1 # This works well for brief comments
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 31/35

Style-Guide: Sections

Use comments to break up a single R script into multiple sections. For
example, each section dedicated to a single exercise of a problem set.

Using “=” does the job nicely:

Example: Sectioning an R Script�
Section name ====================================
Adding a brief explanation here may be good.

x <- 1 # Some code
x <- x + 1

Another section name ============================
Etc...
� �

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 32/35

Coding in R Studio

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 33/35

Coding in R Studio (Contd.)

There are essentially three options for executing code in R Studio:
I Entering code directly in the R console. Note that this makes

reproduction (practically) impossible.

I Selecting a single line in the R script and hitting enter. This runs
the line of code and advances to the next line.

I Block-selecting multiple lines of code and hitting enter. This runs
all selected lines in sequence.

Frequently run your code to check whether everything works as intended.

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 34/35

References

Wickham, H. (2019). Advanced R. CRC press.

Brown Cuevas & Wiemann Statistical Programming with R (Pt. II) 35/35

	References

