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Recap

Last lectured used the example of this New York Times article to
motivate the causal question:

Û What is the change in hourly wages for college graduates if they had

not pursued higher education?

To quantify this “what if” question, we developed an economic model of
hourly wages:

Y = g(W , U), (1)

where Y denotes hourly wages, W = 1 denotes having a college degree
and W = 0 otherwise, and U are all determinants of hourly wages other
than a college degree.

This allowed for formulating a counterfactual informative for our question:

·(U) = g(1, U) ≠ g(0, U), (2)

which we referred to as the returns to education.
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Recap (Contd.)

Two key issues arose in our analysis of the counterfactual (2):
Û U are unknown and possibly beyond our full understanding.
Û For any individual, we may only observe either g(1, U) or g(0, U),

but never both. This is the fundamental problem of causal inference.

Probability theory proved to be a great tool for tackling these di�culties:
Û We modeled (Y , W , U) as random variables to formalize the idea

that we are working with observables and unobservables.
Û We placed a restriction on the joint distribution of (Y , W , U) by

assuming that W ‹‹ U. This allowed us to circumvent the
fundamental problem of causal inference.

Wiemann Probability Distributions 3 / 60



Plan for Today

Today’s lecture reviews key concepts from probability theory.
Û A formal framework of random variables and uncertainty will help us

ensure that our reasoning is logically sound.
Û Probability theory is the part of mathematics that is concerned with

quantifying uncertainty.

Plan for Part A of the review:
Û Formalize the concept of random variables;
Û Characterize random variables;
Û Characterize relationships between random variables.
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Outline

1. Probabilities

2. Random Variables
Û CDFs, pmfs, and pdfs
Û Important Univariate Distributions

3. Random Vectors
Û joint CDFs, marginals and conditionals pmfs and pdfs
Û Independence
Û Bivariate Normal Distribution

These notes benefit greatly from the exposition in Wasserman (2003).
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Sample Space & Events

Probability theory starts with idea of an experiment.

The sample space, denoted �, is the set of possible outcomes of an
experiment.

Realizations (or outcomes) of the experiments are points in the sample
space, Ê œ �.

Collections of realizations are called events E µ �.

Example 1

Consider tossing a coin twice. Then � = {HH, HT , TH, TT}, where for
example Ê = HH is the outcome of landing heads twice. The event of
the first toss being tail is E = {TH, TT}.
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Indicator Functions

Definition 1 (Indicator Function)

Let � be a sample space and E µ � denote an event. The indicator

function of E is defined as

{Ê œ E} = E (Ê) =
I

1, if Ê œ E ,

0, if Ê ”œ E ,
(3)

’Ê œ �.

Example 2

Consider tossing a fair coin twice as in Example 3. Let E1 = {TT} and
E2 = {TH, TT}. We have

{TT œ E1} = {TT œ E2} = {TH œ E2} = 1
{TH œ E1} = 0.

(4)
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Indicator Functions (Contd.)

Indicator functions allow us to succinctly express “yes-or-no” questions.
As these questions become more convoluted, this approach proves helpful
thanks to a few key properties of indicator functions:

Lemma 1

Let � be a sample space and E1, E2 µ � denote two events. The
following hold ’Ê œ �:

a. {Ê œ E1}k = {Ê œ E1}, ’k œ \ {0};
b. {Ê ”œ E1} = 1 ≠ {Ê œ E1};
c. {Ê œ E1 fl E2} = {Ê œ E1} {Ê œ E2};
d. {Ê œ E1 fi E2} = {Ê œ E1} + {Ê œ E2} ≠ {Ê œ E1 fl E2}.

We’ll often use Lemma 1 implicitly – i.e., without explicitly stating so.
Û Use Lemma 1 as an indicator-cheat sheet.
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Probabilities

Probabilities characterize the likelihood of an event in a sample space.

Definition 2 (Probability Measure)

A probability measure on � is a function P : � æ [0, 1] satisfying:
a. P(�) = 1;
b. P(E ) Ø 0, ’E µ �; and
c. P(E1 fi E2) = P(E1) + P(E2), ’E1, E2 µ � : E1 fl E2 = ÿ.

Example 3

Consider tossing a coin twice. Let P(Ê) = 1/4, ’Ê œ � defined in
Example 1. Then P(HH) = P(TT ) = 1/4 and P({HT , TH}) = 1/2.
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Random Variables

Random variables allow us to form a bridge between the sample space of
an experiment and data.

Definition 3 (Random Variable)

A random variable is a function

X : � æ (5)

that assigns a real number X (Ê) to each outcome Ê œ �.

Example 4

Consider flipping a coin twice and let X (Ê) be the number of heads in Ê.
Then for Ê = TH we have X (Ê) = 1.

For the remained of this course, we will directly work with random
variables, often forgetting about the sample space �.
Note: More mathematical rigor is necessary for a technical definition of a random
variable, but that would exceed the scope of this course.
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Cumulative Distribution Functions

The cumulative distribution function allows for succinctly characterizing
random variables.

Definition 4 (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
the function FX : æ [0, 1] defined by

FX (x) = P(X Æ x), ’x œ . (6)

Notation: Capital letters X typically denote random variables, while lower case letters
x typically denote realized values (i.e., a number). We write X ≥ FX to state that X
has distribution FX .
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Cumulative Distribution Functions (Contd.)

The next result is crucial: it states that the CDF e�ectively contains all
the information about a random variable.

Theorem 1

Let X and Y be random variables with CDFs FX and FY , respectively. If

FX (x) = FY (x), ’x œ , then P(X œ E ) = P(Y œ E ).

For two random variables X and Y with CDFs FX and FY , respectively,
we say that X and Y are identically distributed – denoted by X

d= Y – if
FX (x) = FY (x), ’x œ .
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Cumulative Distribution Functions (Contd.)

Example 5

Consider flipping a fair coin twice as in Example 3. Let X be the number
of heads. Then

FX (x) =

Y
___]

___[

0 if x < 0
1/4 if x œ [0, 1)
3/4 if x œ [1, 2)
1 if x Ø 2.

(7)

Now consider a second random variable Y equal to the number of tails.
We have X

d= Y .

The example highlights that X
d= Y ”∆ X = Y .

Û Two random variables can be identically distributed, but their
realizations do not have to be equal.
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Discrete Random Variables

Definition 5 (Discrete Random Variable)

A random variable X is discrete if it takes countably many values
{x1, x2, . . .}. The probability mass function (pmf) of X is defined as

fX (x) = P(X = x), ’x œ . (8)

The support of X is given by

supp X = {x œ | fX (x) > 0}. (9)

The support of X is the set of values it can take. By the definition of
probabilities (Definition 2), it holds that fX (x) Ø 0, ’x œ andq

xœsupp X fX (x) = 1.

The pmf and CDF of X are related via

FX (x) = P(X Æ x) =
ÿ

x Õœsupp X
fX (x Õ) {x

Õ Æ x}. (10)
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Discrete Random Variables (Contd.)

Example 6

Consider flipping a fair coin twice as in Example 3. We have
supp X = {0, 1, 2} and the corresponding pmf is

fX (x) =

Y
___]

___[

1/4 if x = 0
1/2 if x = 1
1/4 if x = 2
0 otherwise.

(11)

We may easily calculate FX (1) via Equation (10) as

FX (1) = fX (0) + fX (1) = 3/4. (12)
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Continuous Random Variables

Definition 6 (Continuous Random Variable)

A random variable X is continuous if there exists a function fX : æ
satisfying

a. fX (x) Ø 0, ’x œ ;
b.

s
fX (x)dx = 1; and

c. P(a < X Æ b) =
s b

a fX (x)dx , ’a Æ b œ .

The function fX is called the probability density function (pdf) of X .

The pmf and CDF of X are related via

FX (x) = P(X Æ x) =
⁄ Œ

≠Œ
{t Æ x}fX (t)dt =

⁄ x

≠Œ
fX (t)dt. (13)

By the fundamental theorem of calculus, we have

ˆ

ˆx
Fx (x) = fX (x). (14)
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Discrete Random Variables (Contd.)

Example 7

Consider the idea of choosing a random number between 0 and 1. For
this purpose, construct the random variable X with pdf

fX (x) =
I

1 for x œ [0, 1]
0 otherwise.

(15)

Clearly fX (x) Ø 0, x œ and
s

fX (t)dt =
s

1

0
1dt = 1. The

corresponding CDF is given by

FX (x) =

Y
_]

_[

0 for x < 0
x for x œ [0, 1]
1 for x > 1.

(16)

This random variable is so useful that it has been given its own name: We
refer to X as a standard uniform random variable, and write X ≥ U(0, 1).
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Random Variables (Contd.)

Discrete and continuous random variables can lead to confusion.

When X is a continuous random variable, do not interpret fX (x) as
P(X = x). By Definition 6, P(X = x) =

s x
x fX (t)dt = 0 which is not

equal to fX (x) (in general). fX (x) = P(X = x) only works for discrete
random variables.

Note also that pdfs may take values larger than 1 or even be unbounded,
but pmfs must map to [0, 1].

There is a third type of random variable which will occasionally arise:
mixed random variables. These satisfy neither Definition 5 nor 6.

Û You can construct a mixed random variable by, for example, adding
a discrete and a continuous random variable.

Û An economic variable that may be modeled by a mixed random
variable is the time spent working each week.
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Cumulative Distribution Functions (Contd.)

Lemma 2 allows us to readily express di�erent kinds of probabilities using
the CDF of the corresponding random variable.

Lemma 2

Let X be a random variable and F be the corresponding CDF. Then
a. P(a < X Æ b) = P(X Æ b) ≠ P(X Æ a) = F (b) ≠ F (a);
b. P(X > x) = 1 ≠ P(X Æ x) = 1 ≠ F (x);
c. If X is continuous, then

F (b) ≠ F (a) = P(a < X < b) = P(a Æ X Æ b)
= P(a < X Æ b) = P(a Æ X Æ b).

(17)
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Cumulative Distribution Functions (Contd.)

Proof.

We prove a. for a continuous random variable X with pdf fX (x).
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Cumulative Distribution Functions (Contd.)
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Quantile Functions

Another characterization of a random variable is its quantile function.

Definition 7 (Quantile Function)

Let X be a random variable and F be the corresponding CDF. The
quantile function (or inverse CDF) is the function F

≠1 : [0, 1] æ supp X

defined by

F
≠1(q) = inf {x | F (x) > q} , ’q œ [0, 1]. (18)

When F is strictly increasing and continuous, then F
≠1(q) is the unique

real number that satisfies

P(X Æ F
≠1(q)) = q. (19)

We will make extensive uses of quantile functions in the next weeks when
formulating critical values for statistical inference.
Note: If you are unfamiliar with the infimum operator inf, just think of it as the
minimum (that will su�ce for this class).
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Important Univariate Distributions

The examples discussed two well-known probability distributions:
Û the coin-toss examples discussed Binomial random variables;
Û Example 7 introduced a special case of a Uniform random variable.

The next few slides introduce other examples of frequently-occurring
discrete and continuous random variables.

Û Use the examples to gain intuition about how random variables can
be leveraged for modeling a real-world experiment.

Û The most important example provided is the normal distribution:
Study this carefully!
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Important Discrete Distributions

Definition 8 (Discrete Uniform Distribution)

Let k > 1 be a given integer. Suppose that X has pmf given by

fX (x) =
I

1/k, ’x = 1, . . . , k,

0, otherwise.
(20)

We say that X has a uniform distribution on {1, . . . , k}, and write
X ≥ U{1, . . . , k}.

The discrete uniform distribution for randomly choosing a single value
from a finite set of values with equal probability.
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Important Discrete Distributions (Contd.)

Definition 9 (Bernoulli Distribution)

Let p œ (0, 1) be a given scalar. Suppose that X as pmf given by

fX (x) =

Y
_]

_[

p, if x = 1,

1 ≠ p, if x = 0,

0, otherwise.

(21)

We say that X has a Bernoulli distribution and write X ≥ Bernoulli(p).

The Bernoulli distribution represents a single coin flip where the
probability of a success is denoted by p.

Note that for x œ {0, 1}, we may write the pmf as

fX (x) = p
x (1 ≠ p)1≠x . (22)
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Important Discrete Distributions (Contd.)

Definition 10 (Binomial Distribution)

Let p œ (0, 1) and n œ be a given. Suppose that X as pmf given by

fX (x) =
I!n

x
"
p

x (1 ≠ p)n≠x , for x = 1, . . . , n,

0, otherwise.
(23)

We say that X has a Binomial distribution and write X ≥ Binomial(p, n).

The Binomial distribution represents the number of successes in a
sequence of n coin flips, where the probability of a success is p.

Notation:
!n

x
"

denotes the number of possible combinations of x out of n elements –
that is,

!n
x
"

© n!

x !(n≠x)!
.

Wiemann Probability Distributions 29 / 60



Important Continuous Distributions

Definition 11 (Uniform Distribution)

Let a < b œ be given scalars. Suppose that X has pdf given by

fX (x) =
I

1

b≠a , ’x œ [a, b],
0, otherwise.

(24)

We say that X has a uniform distribution on [a, b], and write by
X ≥ U(a, b).

The uniform distribution represents choosing a number from the interval
[a, b] at random. The standard uniform distribution introduced in
Example 7 is particularly useful in practice because it can be used to
construct random variables from any other distribution.

Û See Problem 9 in Problem Set 1 for an example.
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Important Continuous Distributions (Contd.)

The CDF of the uniform distribution has a convenient closed form. Let
X ≥ U(a, b), then

P(X Æ x) =
(25)
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Normal Distribution

Definition 12 (Normal Distribution)

Let µ œ and ‡ > 0 be given scalars. Suppose that X has pdf given by

fX (x) = 1Ô
2fi‡

exp
;

≠ 1
2‡2

(x ≠ µ)2

<
, ’x œ . (26)

We say that X has a normal distribution and write X ≥ N(µ, ‡2).

The normal distribution is immensely important in statistics and
econometrics.

Û Normal distributions often end up being suitable approximations, as
formalized by the Central Limit Theorem. Will cover the CLT in
depth in Lectures 4 & 5.

The normal distribution is symmetric around µ:
Û fX (µ + ”) = fX (µ ≠ ”), ’” œ .
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Normal Distribution

Figure 1: Examples of Normal Densities
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Notes. Normal densities with (µ = ≠2, ‡ = 2) in red, and (µ = 0, ‡ = 1) in blue. Plots generated

in R using ggplot2. You can find the corresponding code on GitHub: lecture plots.R.
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Normal Distribution

If µ = 0 and ‡ = 1, we say that X has a standard normal distribution:
Û Denote its pdf by „(x);
Û Denote its CDF by �(x);
Û Denote its quantile function by �≠1(x).

In statistics, standard normal random variables are often denoted by Z .

There exists no closed form expression for �(x). Conventions in statistics
and econometrics make it worthwhile to memorize some key values:

Û �(≠1.96) ¥ 0.025 … �≠1(0.025) ¥ ≠1.96.

Û �(≠1.64) ¥ 0.050 … �≠1(0.050) ¥ ≠1.64.

Û �(1.96) ¥ 0.975 … �≠1(0.975) ¥ 1.96.

Û �(1.64) ¥ 0.950 … �≠1(0.950) ¥ 1.64.
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Normal Distribution

We state the following useful properties without proof:

Lemma 3

Let X ≥ N(µ, ‡2) and Z ≥ N(0, 1). Then,

a. X≠µ
‡

d= Z ;

b. µ + ‡Z
d= X .

Lemma 3a. implies

P(a < X Æ b) =
(27)
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Random Vectors

So far, we’ve only discussed univariate distributions. Need to do better:
Recall that in our analysis of the returns to education involved (Y , W , U).

Û Require tools to characterize relationships between random variables.

A random vector is a function from the sample space to d , for some
d œ – that is, X : � æ d .

Û It’s a simple generalization of random variables (see Definition 3).
Û Each component of a random vector is itself a random variable.

For the ease of exposition, our focus for now is on bivariate random
vectors (d = 2).

Û Concepts generalize naturally to higher dimensions (d > 2).
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Joint Cumulative Distribution Functions

The joint CDF succinctly characterizes random vectors.

Definition 13 (Joint Cumulative Distribution Function)

The joint cumulative distribution function (joint CDF) of a random
vector (X , Y ) is the function FX ,Y : 2 æ [0, 1] defined by

FX ,Y (x , y) = P(X Æ x , Y Æ y), ’(x , y) œ 2. (28)

Note that this definition applies regardless of whether X and Y are
continuous, discrete, or mixed random variables.

Û Combinations also arise: Recall the returns to education example.
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Discrete Random Vectors

Definition 14 (Bivariate Discrete Random Vector)

A pair of discrete random variables (X , Y ) is a bivariate discrete random

vector. The joint probability mass function (joint pmf) is defined as

fX ,Y (x , y) = P(X = x , Y = y), ’(x , y) œ 2. (29)

Example 8

Consider the random vector (X , Y ) with joint pmf given by

Y = 0 Y = 1
X = 0 1/5 1/10
X = 1 3/10 2/5

Thus fX ,Y (0, 1) = P(X = 0, Y = 1) = 1/10.
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Discrete Random Vectors (Contd.)

Definition 15 (Marginal Probability Mass Function)

If (X, Y) is a discrete random vector with joint pmf fX ,Y , then the
marginal pmf of X is defined by

fX (x) = P(X = x) =
ÿ

yœsupp Y
P(X = x , Y = y) =

ÿ

yœsupp Y
fX ,Y (x , y).

The marginal pdf of of Y is defined analogously.

Example 9

Consider again the joint pmf of Example 8. We have P(X = 0) = 3/10 as

Y = 0 Y = 1 Total
X = 0 1/5 1/10 3/10
X = 1 3/10 2/5 7/10
Total 5/10 5/10 1
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Continuous Random Vectors

Definition 16 (Bivariate Continuous Random Vector)

A pair of continuous random variables (X , Y ) is a bivariate continuous

random vector. The joint probability density function (joint pdf) is a
function fX ,Y : 2 æ that satisfies the following properties:

a. fX ,Y (x , y) Ø 0, ’(x , y) œ 2;
b.

s s
fX ,Y (x , y)dxdy = 1; and

c. P((X , Y ) œ A) =
s s

A fX ,Y (x , y)dxdy , ’A µ 2.

Example 10

Consider randomly choosing a point on the unit square with coordinates
(X , Y ). Then

fX ,Y (x , y) =
I

1, if (x , y) œ [0, 1]2,

0, otherwise.
(30)

We have P(X Æ 1/2, Y Æ 1/2) = 1/4.
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Continuous Random Vectors (Contd.)

Definition 17 (Marginal Probability Density Function)

If (X, Y) is a continuous random vector with joint pdf fX ,Y , then the
marginal pdf of X is defined by

fX (x) =
⁄

fX ,Y (x , y)dy .

The marginal pdf of Y is defined analogously.

Example 11

Recall the uniform distribution on the unit square of Example 10:

fX ,Y (x , y) =
I

1, if (x , y) œ [0, 1]2,

0, otherwise.
(31)

We have fX (x) = {x œ [0, 1]} and fY (y) = {y œ [0, 1]}.
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Conditional Distributions

Joint distributions characterize the relationship between random variables.

Marginal probability density (or mass) functions are another name for the
probability density (or mass) functions we discussed in the setting of
random variables.

Û “Marginal” highlights the context of multiple random variables.

We now introduce the concept of conditional distributions.
Û Characterize a random variable when there is information on another

random variable.
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Conditional Distributions

Definition 18 (Conditional Probability Mass Function)

If (X, Y) is a discrete random vector with joint pmf fX ,Y , then the
conditional pmf of X given Y is defined by

fX |Y (x |y) = P(X = x |Y = y) = P(X = x , Y = y)
P(Y = y) = fX ,Y (x , y)

fY (y) , (32)

’(x , y) œ : fY (y) > 0 (and is undefined otherwise). The conditional
pmf of Y given X is defined analogously.

Example 12

Consider again the joint pmf of Example 9. We have

P(X = 0|Y = 0) = P(X = 0, Y = 0)
P(Y = 0) = 1/5

5/10 = 2/5,

P(Y = 0|X = 0) = P(Y = 0, X = 0)
P(X = 0) = 1/5

3/10 = 2/3.
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Conditional Distributions (Contd.)

Definition 19 (Conditional Probability Density Function)

If (X, Y) is a continuous random vector with joint pdf fX ,Y , then the
conditional pdf of X given Y is defined by

fX |Y (x |y) = fX ,Y (x , y)
fY (y) , (33)

’(x , y) œ : fY (y) > 0 (and is undefined otherwise). Then,

P(X œ A|Y = y) =
⁄

A
fX |Y (x |y)dx . (34)

The conditional pdf of Y given X is defined analogously.

From the definitions of the conditional pmf and pdf, we see that

fX ,Y (x , y) = fX |Y (x |y)fY (y) = fY |X (y |x)fX (x). (35)
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Independence

We know turn to a restriction on the relationship between random
variables that is of highest importance in all the identifying assumptions
we will consider in this course: Independence of random variables.

Definition 20 (Independence)

Two random variables X and Y are independent if

P(X œ A, Y œ B) = P(X œ A)P(Y œ B), ’A, B µ . (36)

Independence is denoted by X ‹‹ Y .

Checking Equation (36) by brute force is challenging. Fortunately, we
have the following key result:

Theorem 2

Let (X , Y ) have joint pdf (or pmf) fX ,Y . Then

X ‹‹ Y … fX ,Y (x , y) = fX (x)fY (y), ’(x , y) œ 2. (37)
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Independence (Contd.)

An immediate consequence of Theorem 2 is the following result:

Corollary 1

Let (X , Y ) have joint pdf (or pmf) fX ,Y . Then

X ‹‹ Y … fX |Y (x |y) = fX (x), ’(x , y) œ 2. (38)

Proof.
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Independence (Contd.)

Example 13

Consider again the joint pmf of Example 9. Example 12 showed that
P(X = 0|Y = 0) = 2/5 but we have P(X = 0) = 3/10. Hence, by
Corollary 1, we can conclude that X ”‹‹ Y .

Suppose now that the joint pmf of (X , Y ) is instead given by

Y = 0 Y = 1 Total
X = 0 1/4 1/4 1/2
X = 1 1/4 1/4 1/2
Total 1/2 1/2 1

Now we have fX (x)fY (y) = fX ,Y (x , y), ’(x , y) œ 2. Hence, by Theorem
2, we can conclude that X ‹‹ Y .
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Independence (Contd.)

The next result is important for working with random variables within
economic models.

Corollary 2

Let (X , Y ) be two random variables. Then, for any function h,

X ‹‹ Y ∆ X ‹‹ h(Y ). (39)

Proof.
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Independence (Contd.)

Example 14

Recall the returns to education example:
Û W denotes being a college graduate
Û U denotes other determinants of wages
Û g(W , U) is a model for an individuals wage
Û g(1, U) is the wage had they obtained a college degree
Û g(0, U) is the wage had they not obtained a college degree

The random assignment assumption placed an independence restriction
on the joint distribution of (W , U) – i.e., W ‹‹ U. By Corollary 2, it then
also holds that W ‹‹ g(0, U) and W ‹‹ g(1, U).
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Outline

1. Probabilities

2. Random Variables
Û CDFs, pmfs, and pdfs
Û Important Univariate Distributions

3. Random Vectors
Û joint CDFs, marginals and conditionals pmfs and pdfs
Û Independence
Û Bivariate Normal Distribution
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Bivariate Normal Distribution

We now turn to one particularly important bivariate distribution.

Definition 21 (Bivariate Normal Distribution)

Let (µX , µY ) œ 2 and

� =
5

‡2

X ‡XY
‡XY ‡2

Y

6
, (‡X , ‡Y , ‡XY ) œ 2 : ‡2

X ‡2

Y > ‡2

XY (40)

be given. Suppose that the random vector (X , Y ) has joint pdf given by

fX ,Y (x , y) = 1
2fi

|�|≠ 1

2 exp
I

≠1
2

3
x ≠ µX
y ≠ µY

4€
�≠1

3
x ≠ µX
y ≠ µY

4J
. (41)

We say that (X , Y ) has a bivariate normal distribution and write
(X , Y ) ≥ N(µ, �), where µ © (µX , µY ).

Notation: We often simply write X ≥ N(µ, �) to denote that X is a normal random
vector (i.e., we don’t bother with explicitly writing out its components).
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Bivariate Normal Distribution (Contd.)

Bivariate normals are convenient because their marginal (and conditional)
densities can be succinctly expressed. If (X , Y ) ≥ N(µ, �), then

Û X ≥ N(µX , ‡2

X ) and Y ≥ N(µY , ‡2

Y );

Û X |Y = y ≥ N

1
µX ≠ ‡XY

‡2

Y
(y ≠ µY ), ‡2

X ≠ ‡2

XY
‡2

Y

2

Another useful property of normal random vectors is that independence
reduces to a simple condition.

Theorem 3

Let (X , Y ) ≥ N(µ, �). Then

X ‹‹ Y … ‡XY = 0. (42)

The proof requires more linear algebra than is intended for this course
and is hence omitted here.
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Bivariate Normal Distribution (Contd.)

Lemma 4

Let (X , Y ) ≥ N(µ, �), and Z ≥ N(0, I2). Then,

a. �≠ 1

2

33
X

Y

4
≠ µi

4
d= Z ;

b. µ + � 1

2 Z
d=

3
X

Y

4
;

c. For given a, b œ , we have

aX + bY ≥ N

A
aµX + bµY ,

3
a

b

4€
�

3
a

b

4B
;

d. if in addition X ‹‹ Y , then

aX + bY ≥ N(aµX + bµY , ‡2

X + ‡2

Y ).

Notation: For d œ , Id denotes the identity matrix in d .

Wiemann Probability Distributions 55 / 60



‰2
-Distribution

By Lemma 4a., we’re equipped to construct independent normal random
variables from any bivariate normal random vector (X , Y ) given µ and �.

Û Z1 and Z2 are independent by Theorem 3.

We will frequently use this result because it allows for the construction of
another well-known probability distribution: The ‰2-distribution.

Theorem 4

Let Z ≥ N(0, I2). Then

Z
€

Z = Z
2

1
+ Z

2

2
≥ ‰2(2), (43)

where ‰2(df ) denotes the ‰2
-distribution with df -degrees of freedom.

More generally, if Z ≥ N(0, Im), for some m œ . Then

Z
€

Z =
mÿ

i=1

Z
2

i ≥ ‰2(m). (44)
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‰2
-Distribution

We formulate the following corollary for ease of application:

Corollary 3

Let X ≥ N(µ, �) where supp X = m
. Then

(X ≠ µ)€�≠1(X ≠ µ) ≥ ‰2(m). (45)

Proof.
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‰2
-Distribution

Figure 2: Examples of ‰2≠Densities
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Notes. ‰2
densities with (df = 1) in blue, (df = 10) in red, and (df = 30) in green. Plots

generated in R using ggplot2. You can find the corresponding code on GitHub: lecture plots.R.
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Summary

Thus far, we focused on distributions of random variables:
Û CDFs and pdfs (or pmfs) fully characterize a random variable.
Û Joint CDFs and joint pdfs (or pmfs) fully characterize relationships

between random variables.
But, knowning everything about a random variable or its relation to other
random variables is not always necessary.

Û Often, we are content with knowing about key features of a random
variable that partly characterize it or its relation to other random
variables.

Û The causal question in Lecture 1 did not consider the distribution of
hourly wages for college graduates had they not pursued higher
education. Instead we – and the New York Times article – were
content with knowing the expected returns to education.

In Part B of the probability theory review, we will cover concepts that
summarize key features of a random variable’s (or random vector’s)
distribution.
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