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Recap

In Part A of the probability theory review, we discussed probability
distributions:

> CDFs and pdfs (or pmfs) fully characterize a random variable.

> Joint CDFs and joint pdfs (or pmfs) fully characterize relationships
between random variables.

But we may not always require a full characterization. Often, we are
content with knowing about key features of a random variable that partly
characterize it or its relation to other random variables.

> Recall the returns to education example where we were interested in

and not the conditional distribution of 7(U) given W = 1.

The key concept we will cover in this lecture are expectations.
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Outline

1. Features of Probability Distributions
> Expectation

> Variance
> Covariance

> Correlation

2. Features of Conditional Probability Distributions
> Conditional Expectation

> Conditional Variance

3. Mean Independence

These notes benefit greatly from the exposition in Wasserman (2003).
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Expectation

Definition 1 (Expected Value)

The expected value of a random variable X is defined as

ZXESupr xfx(x), if X is discrete,

Ex[X] =
x[X] fR xfx (x)dx, if X is continuous.

(2)

The expected value is a one-number summary of a random variable.

> X is a random variable but Ex[X] is a number.

> Considered a measure of central tendency.

We say that the expectation of X exists if E[|X]|] < oc.

> In this course, we always (implicitly) assume that expectations exist.

Note: You may encounter various other names for the expectation, including “mean”
or “first moment,” as well as alternative notations. For example, we may also express

Equation (37) as a Riemann-Stieltjes integral: Ex[X] = fxdF(x).
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Expectation (Contd.)

Example 1

Consider tossing a fair coin twice. Let X be the number of heads. Then

(1/4 ifx=0
1/2 ifx=1
f —
x(x) <1/4 if x = 2
0 otherwise,

\

and the expected number of heads is
Ex[X]=2 xd6)
?(65(1”])(
= of) + 1§ + LF(Y)

Iy
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Expectation (Contd.)

Example 2
Consider X ~ U(a, b). Then

L Vx € [a, b]
f — b—23?’ 9 ’ 5
x(x) {O, otherwise, (5)

and we have

Ex [X] :?OX i(wa/x

=/ x{/{xeﬁab]}’l—‘op)‘

= 1 ©
A
N sz&q
J
Soat | WrdD e
T 2 (bed) 2y =a) L
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Law of the Unconscious Statistician

The next result is crucial when working with economic models involving
random variables.

Theorem 1 (Law of the Unconscious Statistician)

Let X be a random variable and define Y = h(X) for some function h.
Then

ZXEsupr h(x)fx(x), if X is discrete,

Ev| Y| = Ex|h(X)| =
y[Y] x[h(X)] f]R x)dx, if X is continuous.

Proof.

See Exercise 4 in Problem Set 1 for the discrete case. ]

The theorem is remarkable because h(X) defines a new random variable,
yet, we do not need to go through the trouble of deriving its distribution.
Instead, we may work with the distribution of X.

Note: The result gets its name from the fact that Equation (7) is often stated w/o the

realization that it requires a proof and does not immediately follow from Definition 1.
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Law of the Unconscious Statistician (Contd.)

Example 3
Let X be a continuous random variable. Consider Y = h(X) where
h(x) = 1{x € A} for some set A C R. By Theorem 1, we have

Ev[Y]= E [L(x)]
joﬂz,xej; J (x)elx
~oP

Y

(8)
L -L‘ (x)Ofx

P(xeA)

More generally, for any random variable X and set A C IR, it holds that

V)

1)

Ex[I{X e A}|]=P(X € A). (9)
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Expectations (Contd.)

Expectations are defined as sums and integrals and thus inherit their
useful properties:

Theorem 2

Let X be a random variable. Then
Ex [a + bX] = a+ bEx[X], (10)

Va, b € RR.

Proof.

We prove the result for continuous X.

79 0] 0o
Ex[a+ bX] =7 (a+ ba)feoclx = J 2 dlaols + [ br Ol
M -9 -0
- do)'oor(x)o[k rb Txf(x)oex (11)
2.~ T~
= | = £(x)
- o +LE[LX] -
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Expectations (Contd.)

Theorem 3
Let Xi,...,X, be random variables. Then
Ex,....x, [Z biXi| = biEx [X], (12)
i=1 i=1
Vbi,...,b, € R.
Proof.

Left as a self-study exercise. (Hint: Prove this for continuous random
variables by using linearity of integrals, as in the proof of Theorem 2, and

the definition of marginal pdfs.) ]
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Expectations (Contd.)

Theorem 4
Let Xi,...,X, be independent random variables. Then
Ex.,..x | [ [ Xi| = 1] Ex X1 (13)
i=1 i=1
Proof.

We prove the result for continuous X.
n oo oo

T1%]| = 55 () 360, = s ek,
pale -0 ~oo

,L O po

> T T (i) f6) - fxa)olix,

«0\7
= ] x,J(x,)o?k, --"LXA f("w) C(x

< ﬁ E/('in] [

vel I Expectations

Ex,.. x,

—

(14)

>
%
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Variance

Definition 2 (Variance & Standard Deviation)

The variance of a random variable X with ux = Ex [X] is defined as
Var(X) = Ex [(X _ MX)Z] . (15)

The standard deviation of a random variable X is defined as

sd(X) = +/ Var(X). (16)

The variance (and standard deviation) are measures of dispersion.

> Characterize the spread of the distribution of X around its mean.

From Equation (15), it follows that

Var(X) = E£X1‘ 2Xu w2 Elx)- Bl A Eb‘z] (17)
= ELr- 26T + E[x]" = B -Elx])
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Variance (Contd.)

Example 4

Consider tossing a fair coin twice as in Example 1. Let X be the number
of heads and recall Ex[X] = 1. We have

Var(X) = E(:(X;uf]
= (0-)"flo) + (1-1'¢(D> (2-1)/(2)

(18)
= (@) + £ ()
L

-—

2

OR: Ve () 2 BCx?) —F[x]" = [+2 ~)

Y
e E[x]= G+ My r @) =z w= 1T
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Variance (Contd.)

Corollary 1
Let X be a random variable. Then
Var(a + bX) = b*Var(X), (19)
Va,b € R.
Proof.
We have

Var(a + 6X) = [ (s bx - BLe 0xT)' | = £[ (o ~a - b)Y
= B[ (-0
= b Ef(x- Ex])"]
= b Ve (%)

(20)
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Variance (Contd.)

Example 5

Let X ~ Bernoulli(p). Then

Ex[X] = Of() + 140

(21)
= ¢
n = X=-A{x=1
Var(X) = E[\,X l [—Lxé f:»{/{X*l}z
= £0A - Elx] six=1y =K (22)
=P
= (C’(—V)

Example 6

Let X ~ N(u,0?). Then Ex[X] = u and Var(X) = o°.
Wiemann
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Covariance

So far, we have discussed two important features of a random variable:
its mean and its variance.

We now turn to features that characterize the joint distribution of random
variables, and begin with a measure of joint dispersion: the covariance.

Definition 3 (Covariance)
The covariance of two random variable X and Y with ux = Ex[X] and

py = Ey[Y] is defined as

Cov(X,Y) = Ex,y [(X — ux)(Y — puy)]. (23)

Ao s Cov( X x) = Vo ()
From Equation (23) it follows that

Cov(X,Y) EDZ‘}‘XY Xphy -r/ux/AA )ELX‘/] ~/¢£L7J Fledpy *(21{;7

B\ 2801 ELe) + ELARLA= Eberd- ELXTELD
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Covariance (Contd.)

Example 7

Consider random variables X and Y with joint pmf given by

Y=0 Y=1 Total

X=0 1/5 1/10 3/10
X=1 3/10 2/5 7/10
Total 5/10 5/10 1

We have Ex[X] =7/10 and Ey[Y] =1/2, and

Cov(X,Y)= E[xv) - E}x)El¥)

— _ 2!
2.2 -4

-— -

c 29 10
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Covariance (Contd.)

Corollary 2
Let X and Y be random variables. Then

X 1LY = Cov(X,Y)=0. (26)

The converse does not hold in general.

Proof.
We have

Cov(X,Y) = E[CX’}{;() Cf'ﬂ?)l
J
= Elo-m)l ELy-u] =0

—— (27)
= B[y ELn)
= E[0- BleN) = EZI-EL] =0

See Exercise 7c) in Problem Set 1 for a counterexample of the

converse. []
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Covariance (Contd.)

Corollary 3
Let X and Y be random variables. Then
Cov(a + bX, Y) = bCov(X, Y), (28)
Va, b € RR.
Proof. @ +o¥ - (a+ laE[X])
We have e
Cov(a+ bX,Y) :E[(ng)g[a +)0>(])(y« E[YD}
= Blb(x- B0~ E0)] -
= b BLOC-B LX) (r- EL7D))
=) Cv(%,7)
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Covariance (Contd.)

Corollary 4
Let X and Y be random variables. Then
Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). (30)
Proof.
We have

Var(X + Y) = E[(Xw _ ECx*y)}ZJ = E[((X—E[x))»»(r-E[YJ))j
= Bl (a-£0)* + 20¢- 6000 E1¥]) + (r-£172)°]
(31)
= £[ (x-EGA)] + Bly-e )70 +2 E[(x-E01r- EL))

= Var(X) + Vauly) 12 Con (X, )
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Covariance (Contd.)

Corollary 5
Let Xi,...,X, be a collection of independent random variables. Then
ar (Z X,-) = Z Var(X;). (32)
i i=1
Proof.
We have

- £ %‘} - B[ (x; -£C5;)] (33)
ii[[(x, e g £ (1)L = £ ELOx-El; 11 T Z Et-etl-aif
= TVer 80+ LY BUKEGUJAOSEM = ZV,, (a;) .
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Covariance (Contd.)

Theorem 5 (Cauchy-Schwarz Inequality)
Let X and Y be random variables. Then
Cov*(X, Y) < Var(X)Var(Y).
(=  Ca(X,7) < 8d (x)sdly)

Proof.
Tele ac|R,

Vor(aX s y) = Ver(ak) Vor(t) + 2 Cov(aX, )
> q Ve (%) #Vor(¥) ¥ La Cev(k 1)
FOC:  2aVor(x) +2 Con(x,y) = 0

:) CQ: —CWCKIV)
Vew (K)
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Covariance (Contd.)

. Co (X9 _ (XY
Ve (2x+Y) s + Vo (\7) s

Cc»/L(X/ 7)
Ver (X))

= Veur(Y)-

o O ) Ve laxe )
Vev (&)

= (o *X)7) = Vouk X )Ver(7) = \f‘//r/\g)\/w(awr 7)
#2© 20

=> Cori(%,7) & Vor( X )Var(¥)

(%tﬁ H"'@;@W/ewd&%%\{ «3&/)75“23 [ = o+ b)()m
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Correlation

Notice the units of Cov(X, Y) are the units of X times Y.

> Makes comparisons challenging to interpreted.

> Motivates normalization by the units of X times Y.

This leads to a measure of linear dependence: the correlation.

Definition 4 (Correlation)
The correlation of two random variables X and Y is defined as

Cov(X,Y)

corr(X,Y) = sd(X)sd(Y)

(35)

Note: corr(X,Y') is considered a measure of linear dependence because
corr(X,Y)e {-1,1} <« da,beR:Y =a+ bX.
We don’t make use of this result in this course and thus state it here w/o proof.

Wiemann Expectations 28 / 44



Correlation (Contd.)

A consequence of the Cauchy-Schwarz inequality is the following result:

Corollary 6

Let X and Y be random variables. We have

—1<corr(X,Y) <1. (36)

Proof. 1 Geonlxy &1

=) conri(X7) L1

=) Cer '(47) .
Vo (x) Ver(7)

&7 Cov(xe1) L Vor(X) Vor(y) l/lo&& by C. 5.
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Correlation (Contd.)

Example 8

Reconsider the random variables X and Y of Example 7. We have

corr(X,Y) = (on CK/ 7)

x)=2 .2

l/ZO \/01/( (o] ,]O

= JV-CV(X)7\[\}W(7)7 \/6‘4/(‘1)‘ L 2
/20

Wiemann
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Conditional Expectation

We now introduce the concept of conditional expectations.

> Characterize features of a random variable when there is information
on another random variable.

Definition 5 (Conditional Expectation)

The conditional expectation of X given Y = y is defined as

ZXESUpr XfX|Y(Xb/), if X is discrete7

Exiy[ XY =y|=
x|y [X] y] fR xfx |y (x|y)dx, if X is continuous.

(37)

Notice that this is simply Definition 1 where we have replaced the pdf (or
pmf) of X with the conditional pdf (or pmf) of X given Y = y.

Note: Ex|y[X|Y = y] is a number, however, Ex|y[X|Y] is a random variable. In
econometrics, Ex|y[X|Y] is often called the conditional expectation function (CEF).
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Conditional Expectation (Contd.)

Example 9
Suppose X ~ U(0,1) and Y|X ~ U(X,1). Then

_ ¢ l
EY|X[Y‘X] _J-L o/{y = [?f’:;)]x Jylxcyl,)):’(/<\{€[2(/1] };(JR

=X* L HOHX)
1(H{-X) AR

= u‘ = J(/(*'X)

1 A

and
Eyix[YIX =x] = iLC’ +x)

Notice that Ey|x[Y|X] ~ U (3,1) but Eyx[Y|X = x] is a number.

Wiemann Expectations 33/ 44



Conditional Expectation (Contd.)

Corollary 7
Let X and Y be random variables. Then

Ey|x [X + XY |X] :X+XEy|X[Y]X]. (38)
Similarly, for all functions hy, h,, and g,

Ey x [h1(X) + ha(X)g(Y)|X] = hi(X) + ha(X)Ey x [g(Y)IX].  (39)

Proof.
We prove Equation (38) for continuous Y.

wx(7mj7

= Xﬁocg),wﬁyl)()ofy + on\, ocm(ﬂ)()oe}’:)( +X E(11X]
Ad:_/-«-—/ ‘L—f‘—/
= =Ly 1] O
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Law of lterated Expectations

Theorem 6 (Law of Iterated Expectations; LIE)

Let X and Y be random variables. Then

Ev[Y] = Ex [Eyix[YIX]] . (40)

Proof.

We prove the result for continuous X and Y.

Ex |Evix[YIX]] _20 ,mfﬂXw&O( (ol

P

=) 770[7 (7lx)o()y/(a)ofx 2 J f 7(,‘(7|x)o[x(x)o?7«(x

=P -0

P
;_ij:)y J[Yx 7/’()0?70//( 2-L7-§o o(,x(ylk)o[x(jy

,20744/027 EL] m
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Law of Iterated Expectations (Contd.)
Example 10 (A Real-Life Simpson’s Paradox)

An actual example from my university studies: Let Y denote the final
course score, X, denote gender, and X, country of origin. We may have

EY|Xg[Y’Xg = m] > Ey|Xg[Y‘Xg — f],
even though we also have

EY|Xg,Xo[Y‘Xg =m, X, = a] < EY|Xg,Xo[Y‘Xg =f, X, = a],
and  Eypx, x,[Y|Xe = m, Xo = b] < Eyix x,[Y|Xg = £, X, = b].

How is this possible? The LIE gives

ECY10g=u)> B[E[yl-m, 61 ~Efy 1y = 5o Pl =)
YE[r X m, Xm0l (K pbo | Ky =)

EC71x=4)- EIE[Y x4 60 -Ely = o) Plizaln-0)
YE[7 1 x>, Xorbl P (X7l 1 =)

Jusk waeed - E(y Ity wmoma)>> Ely1xo f, ¥orbd § Plipalpy=m) 5> Pk aly,=4)
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Conditional Variance

Another useful feature of Y given X is its conditional variance.

> Measures dispersion of Y given X.

Definition 6 (Conditional Variance)

The conditional variance of Y given X is defined as
Var(Y|X) = Eyix [(Y — pyix)?|1X] (41)
2
_ 3 .
where My|X = EY|X [Y‘X] - E‘y,)([7 [X] - Eﬂifl)(,]

Example 11

Consider the returns to education example from Lecture 1.

> Var(Y|W = 1) is the variance of hourly wages of college graduates.

> Var(Y|W = 0) is the variance of hourly wages of non-graduates.

Intuitively, which do you think is greater? Why?
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Law of Total Variance

Corollary 8 (Law of Total Variance; LTV)

Let X and Y be random variables. Then

Var(Y) = Ex [Var(Y|X)] + Var (Ey|x[Y|X]) . (42)

Proof.
We have

LIE
Ex [Var(Y|X)] + Var (Eylx[Y‘X]) — = t Dll

Bl el 1x) By’ | - B[ (B - ELEE@)‘J
= ] £ ) -Elaar] vEL Bl - €L L] +EDT']

i i&ﬁi'ﬂl LEELEy ) + €0 = €01~ €t
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Mean Independence

Recall that independence of random variables places a strong restriction
on their joint distribution.

We now turn to a weaker restriction: mean independence.

Definition 7 (Mean Independence)

Y is said to be mean independent of X if

Evix[Y|X] = Ev[Y]. (43)

Exercise 6 in Problem set 1 shows that we can interpret Ey|x[Y|X] as
the best predictor of Y given X under the L[2-loss.

> Mean-independence of Y with respect to X implies that X has no
predictive value for Y under the [2-loss.

> Independence of Y and X implies that X has no predictive value for
Y under any loss.
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Mean Independence (Contd.)

The next results states that mean independence is a weaker restriction on
the joint distribution than independence.

Corollary 9
Let X and Y be random variables. Then

X LY = Eyx[Y|X] = Ey[Y]. (44)

The converse does not hold in general.

Proof.
See Exercise 7a) in Problem set 1 for a proof when X and Y are
continuous. See Exercise 7c) for a counterexample of the converse. L[]
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Summary

This concludes our review of probability theory!

> Part A discussed distributions of random variables.

> Part B discussed features of distributions of random variables.

We are now fully equipped to revisit Task 1 (Definition) and Task 2
(Identification) from Lecture 1.

> Patience: We will do so in Lecture 6 & 7.
Even better: We are equipped for identification analysis under

assumptions other than Random Assignment.

> Know everything to show identification under the Selection on
Observables or the Instrumental Variables assumptions.

> Important because Random Assignment wasn't plausible in the
returns to education example.

But there are three distinct tasks in the analysis of causal questions.

> In the next lecture, we begin the review of statistics.

> This is preparation for Task 3 (Estimation).
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