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Recap

The review of probability theory introduced a formal language for
characterizing uncertainty.

Û Introduced random variables and their probability distributions;
Û Developed concepts to describe features of random variables;
Û Discussed restrictions on the joint distribution of random variables.

With our toolbox, we can return to the returns to education example.
Û Under the random assignment assumption, we can show that

EU [g(1, U) ≠ g(0, U)|W = 1] = EY [Y |W = 1] ≠ EY [Y |W = 0],

where EY [Y |W = 1] and EY [Y |W = 0] are features of the joint
distribution of the observables (Y , W ).

Note that EY [Y |W = 1] and EY [Y |W = 0] are theoretical concepts.
Û Statistics forms a bridge between random variables and data.
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Outline

1. Estimators

2. Finite Sample Properties
Û Bias
Û Variance
Û The Bias-Variance Trade-O�

3. Large Sample Properties
Û Consistency
Û Asymptotic Distribution

4. On the Interpretation of Estimates

These notes benefit greatly from the exposition in Wasserman (2003) and the
lecture notes of Prof. Max Tabord-Meehan.
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Random Sampling

Consider independent random variable X1, . . . , Xn with Xi ≥ Fi , ’i .
Û When Fi = F , ’i = 1, . . . , n, we say that X1, . . . , Xn are independent

and identically distributed (iid).
Û To denote an iid sample of size n from F , we write

X1, . . . , Xn
iid≥ F . (1)

Example 1

Consider X1 ≥ N(µ1, ‡2

1
) and X2 ≥ N(µ2, ‡2

2
).

Û If X1 ‹‹ X2, then X1 and X2 are independent.
Û If (µ1, ‡2

1
) = (µ2, ‡2

2
), then X1 and X2 are identically distributed.

Û If X1 ‹‹ X2 and (µ1, ‡2

1
) = (µ2, ‡2

2
), then X1 and X2 are iid.

Notation: Instead of (1), we also sometimes write X1, . . . , Xn
iid≥ X. So X may denote

a random variable or its distribution.
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Estimators

Statistics is concerned with learning about the distribution from F using
a sample X1, . . . , Xn ≥ F .

Û We will (for the most part), consider iid-samples.

Instead of fully characterizing F , the focus often lies on features of F .
Û Features of interest are called parameters.
Û For example, we may be interested in µ © E [X ] where X ≥ F . Here,

µ is the parameter of interest.

An estimate is a “guess” for the value of the parameter of interest.
Û An estimator is a function of the sample whose value serves as a

“guess” for a parameter of interest.
Û For example, if µ œ and supp Xi = , ’i , then an estimator for µ

is a function µ̂n(X1, . . . , Xn).
Û Importantly: µ is a number but µ̂n is a random variable.

Notation: Subscripts on expectation operators or distribution functions are omitted
from now on whenever the context is clear.

Wiemann Properties of Estimators 6 / 60



Estimators (Contd.)

Example 2

Consider a sample X1, . . . , Xn
iid≥ F . An estimator for F (x) = P(X Æ x) is

given by

‚Fn(x) = 1
n

nÿ

i=1

{Xi Æ x}, (2)

that is, the share of the sample below x is a “guess” for P(X Æ x).

The estimator ‚Fn is called the empirical CDF.

The empirical CDF leads to a class of estimators that are know under the
sample analogue principle.

Û Suppose we are interested in a feature of F . The sample analogue
principle suggests using the analogous feature of ‚Fn as an estimate.
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Estimators (Contd.)

Example 3

Consider a sample X1, . . . , Xn
iid≥ F . Let µ = E [X ] denote the parameter

of interest. The sample analogue principle suggests the estimator

µ̂n © En[X ] = 1
n

nÿ

i=1

Xi , (3)

where En denotes the expectation with respect to the empirical CDF ‚Fn.

Similarly, if the parameter of interest is ‡2 = Var(X ), the sample
analogue principle suggests the estimator

‡̂2

n © (4)
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Estimators (Contd.)

The sample analogue principle is not the only approach to constructing
estimators. Another frequently encountered class of estimators are
extremum estimators, defined as the minimizers of a loss-functions.

Example 4

Consider a sample X1, . . . , Xn
iid≥ F and let µ = E [X ] denote the

parameter of interest. Define an estimator

µ̂n = arg min
µœ

nÿ

i=1

(Xi ≠ µ)2. (5)

Taking first order conditions, we have

0 =
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Estimators (Contd.)

For a given parameter, there infinitely many possible estimators.

Example 5

Consider a sample X1, . . . , Xn
iid≥ F and let µ = E [X ] denote the

parameter of interest. Each of the following are estimators for µ :
Û µ̂(1)

n = 0;

Û µ̂(2)

n = X1;

Û µ̂(3)

n = 1

n
qn

i=1
Xi .

Û µ̂(4)

n = 1

n+⁄

qn
i=1

Xi for some fixed ⁄ œ +.
Which one do you like best?

Statistics provides tools that allow for comparisons of estimators.
Û Allows for selecting the “best” (or – at least – a “good enough”)

estimator.
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Sampling Distribution

Recall that an estimator is a function of random variables and hence itself
a random variable.

Û The sampling distribution of an estimator is a name for its
distribution.

Comparisons of estimators are analogous to comparisons of (features of)
their sampling distribution.

Û The sampling distribution often depends on the sample size n.

Consider an estimator ◊̂n for some parameter ◊ of a distribution F .
Û Finite sample properties describe features of the distribution of ◊̂n.

These properties hold for any sample size n œ .
Û Large sample properties describe features of the asymptotic

distribution of ◊̂n. These properties hold approximately for large
enough sample sizes n.
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Bias

We begin with describing the expected deviations of the estimator from
the true parameter.

Definition 1

The bias of an estimator ◊̂n for ◊ is defined as

Bias(◊̂n) = E
Ë
◊̂n

È
≠ ◊. (6)

The estimator is said to be
Û unbiased if Bias(◊̂n) = 0;
Û downwards biased if Bias(◊̂n) < 0;
Û upwards biased if Bias(◊̂n) > 0.
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Bias (Contd.)

Example 6

Consider the estimators µ̂(1)

n , µ̂(2)

n , µ̂(3)

n and µ̂(4)

n of Example 5. We have

Bias(µ̂(1)

n ) =

Bias(µ̂(2)

n ) =

Bias(µ̂(3)

n ) =

Bias(µ̂(4)

n ) =

Note that the Bias of µ̂(4)

n depends on the unknown parameter µ.
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Bias (Contd.)

Example 7

Consider the estimator ‡̂2

n defined in Example 3. We have

‡̂2

n =

and
Bias(‡̂2

n) =

Can you construct an unbiased estimate for Var(X )?
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Estimation Variance

Example 6 showed that very di�erent estimators can have the same bias.
Û Require other features of the sampling distribution to make

comparison useful.

Another key property of an estimator is its variance:

Var
1

◊̂n
2

= E
51

◊̂n ≠ E [◊̂n]
22

6
(7)

Û Describes deviations from the expected value of the estimator.
Û The expected value of a biased estimator is not the true parameter.

Figure 1 illustrates why considering both bias and variance is useful for
distinguishing estimators.

Û Draws from the sampling distribution of the estimators of Example 5.
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Estimation Variance (Contd.)

Figure 1: Draws from Sampling Distributions of Estimators
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Notes. Histograms of µ̂(2)

n , µ̂(3)

n and µ̂(4)

n of Example 5 where n = 10 and (µ, ‡2
) = (1, 1). For µ̂(4)

n ,

I set ⁄ = 1. You can find the corresponding code on GitHub: lecture plots.R.
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Estimation Variance (Contd.)

Example 8

Consider the estimators µ̂(1)

n , µ̂(2)

n , µ̂(3)

n and µ̂(4)

n of Example 5. We have

Var(µ̂(1)

n ) =

Var(µ̂(2)

n ) =

Var(µ̂(3)

n ) =

Var(µ̂(4)

n ) =

Note that the variances of µ̂(2)

n , µ̂(2)

n , and µ̂(4)

n depend on the unknown
parameters (µ, ‡2).
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The Bias-Variance Trade-O�

A popular criterion for evaluating estimators is the mean-squared error:

MSE
1

◊̂n
2

= E
51

◊̂n ≠ ◊
22

6
. (8)

Û Describes the squared deviations of ◊̂n from the true parameter.

The next result shows that the MSE is a one-number summary of the
bias and variance of an estimator.

Corollary 1

Let ◊̂n be an estimator for ◊. We have

MSE
1

◊̂n
2

= Bias
1

◊̂n
22

+ Var
1

◊̂n
2

. (9)

Proof.
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The Bias-Variance Trade-O� (Contd.)

Example 9

Our analysis suggests that we may prefer µ̂(3)

n to µ̂(2)

n .
Û Both are unbiased but Var(µ̂(2)

n ) > Var(µ̂(3)

n ).

But Figure 1 also suggests that we may prefer µ̂(4)

n to µ̂(2)

n for small ⁄.
Û Even though Bias(µ̂(2)

n ) < Bias(µ̂(4)

n ), we may find the di�erence in
Var(µ̂(2)

n ) and Var(µ̂(4)

n ) su�ciently large to prefer the latter.

Calculations in R show that for the setting of Figure 1, we have:
Û MSE

1
µ̂(1)

n
2

= 1.00; MSE
1

µ̂(2)

n
2

¥ 0.97;

Û MSE
1

µ̂(3)

n
2

¥ 0.10; MSE
1

µ̂(4)

n
2

¥ 0.09.

Note: These are results for a specific parameter values (µ, ‡2).
Simulation are not mathematical proofs!
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Large Sample Properties

Note that in Examples 5 and 8 depended on unknown parameters (µ, ‡2).
Û Bias(µ̂(4)

n ) depends on µ;

Û Var(µ̂(2)

n ) and Var(µ̂(3)

n ) depend on ‡2;

Û Var(µ̂(4)

n ) depends on (µ, ‡2).

Without knowledge of the parameters that we want to estimate, we can’t
rank our estimators is terms of the MSE!

Instead of the (often) impossible question
Û “Which estimator is best (or: ‘good enough’)?”

we instead attempt to answer the question
Û “Which estimator will eventually be best? (or: ‘good enough’)”

Here, “eventually” considers gathering more and more observations.
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Large Sample Properties (Contd.)

It turns out that we can make statements about the eventual
characteristics of estimators in many settings without knowledge of the
parameters of interest.

We rely heavily on two notions of convergence of random variables:
Û Convergence in Probability;
Û Convergence in Distribution.

Using these concepts, we study
Û the consistency of an estimator, which checks whether it will

eventually be arbitrarily “close” to the true parameter value;
Û the asymptotic distribution of an estimator, which approximates its

sampling distribution when n is large.
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Convergence in Probability

Recall convergence in the context of sequences of real numbers:
Û Consider x , x1, . . . , xn œ . We write xn æ x if

’Á > 0, ÷NÁ œ : |xn ≠ x | < Á, ’n Ø NÁ.

Convergence in probability generalizes this notion of convergence to
sequences of random variables.

Definition 2 (Convergence in Probability)

Let X1, . . . , Xn be a sequence of random variables, and let X be another
random variable. We say Xn converges in probability to X if

’Á > 0, P (|Xn ≠ X | > Á) æ 0, as n æ Œ. (10)

We write Xn
pæ X .

In words: If Xn
pæ X , then Xn deviates from X by no more than Á with

large probability as n æ Œ.
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Consistency

We consider convergence in probability to analyze whether an estimator
◊̂n for ◊ will eventually be arbitrarily close to the true parameter value.

Definition 3

We say an estimator ◊̂n for a parameter ◊ is consistent if

◊̂n
pæ ◊. (11)

Consistency is often considered a minimum requirement for an estimator.
Û If the estimator is not arbitrarily close to the true parameter even

with infinitely many observations, then there is little hope that it will
be reasonably close when the sample size n is finite.

Û No inconsistent estimator is considered to be “good enough.”

Note: Equation (11) implicitly considered n æ Œ. Unless otherwise stated, we always
consider n æ Œ in this course.
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Consistency (Contd.)

Example 10

Consider the estimators µ̂(1)

n and µ̂(2)

n of Example 5. We have, ’Á > 0,

P
1

|µ̂(1)

n ≠ µ| > Á
2

=

P
1

|µ̂(2)

n ≠ µ| > Á
2

=

Hence, neither µ̂(1)

n nor µ̂(2)

n are consistent estimators of µ.

Û Since neither estimator meets the minimum requirement, we won’t
consider them any further.
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Weak Law of Large Numbers

To show consistency of less trivial estimators, we need new technical
tools. The most important is the Weak Law of Large Numbers:

Theorem 1 (Weak Law of Large Numbers; WLLN)

Let X1, . . . , Xn
iid≥ X be a random sample. Then

1
n

nÿ

i=1

Xi
pæ E [X ] . (12)

In words: As n æ Œ, the sample average concentrates around its mean.

Example 11

Consider the estimator µ̂(3)

n of Example 5. By the WLLN,

µ̂(3)

n
pæ µ,

so that µ̂(3)

n is a consistent estimator of µ.
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Weak Law of Large Numbers (Contd.)

To proof the WLLN, we make use of the following intermediate result:

Lemma 1 (Chebyshev’s Inequality)

Let X be a random variable. Then,

’Á > 0, P (|X | > Á) Æ
E

#
X 2

$

Á2
. (13)

Proof.
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Weak Law of Large Numbers (Contd.)

We now return to the proof of the WLLN.

Proof.
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Weak Law of Large Numbers (Contd.)

Examples 10 and 11 discussed consistency of the estimators µ̂(1)

n , µ̂(2)

n ,
and µ̂(3)

n of Example 5. What about µ̂(4)

n ?

Note that

µ̂(4)

n = 1
n + ⁄

nÿ

i=1

Xi = n
n + ⁄

1
n

nÿ

i=1

Xi , (14)

so that µ̂(4)

n is a function of 1

n
qn

i=1
Xi and n

n+⁄ .

The WLLN provides considers convergence in probability of the sample
average. Now, we need tools to:

Û derive convergence in probability of random vectors;
Û derive convergence in probability of functions of random vectors.
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Joint Convergence in Probability

Definition 4

Take k œ and let X̃n = (X1,n, . . . , Xk,n), n Ø 1, be a sequence of
random vectors, and let X̃ = (X1, . . . , Xk) be another random vector. We
say X̃n converges in probability to X̃ if

’Á > 0, P

Q

a
ı̂ıÙ

kÿ

j=1

(Xj,n ≠ Xj)2 > Á

R

b æ 0, as n æ Œ. (15)

We won’t require using Equation (15) directly due to the following result:

Theorem 2

Take k œ and let X̃n = (X1,n, . . . , Xk,n), n Ø 1, be a sequence of
random vectors, and let X̃ = (X1, . . . , Xk) be another random vector.
Then

Xj,n
pæ Xj , ’j = 1, . . . , k ∆ X̃n

pæ X̃ . (16)
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Continuous Mapping Theorem

The following theorem delivers a powerful tool for proving convergence of
any continuous functions of sample averages.

Theorem 3 (Continuous Mapping Theorem; CMT)

Let Xn, n Ø 1, be a sequence of random vectors, and let and X be
another random vector. If Xn

pæ X, then

g (Xn) pæ g (X ) , (17)

for any function g that is continuous at g (x) , ’x œ supp X.

Example 12

Let An
pæ a œ and Bn

pæ b œ . Consider g(a, b) = a/b. Then

g (An, Bn) pæ g(a, b), (18)

by the CMT as long as b ”= 0.
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Continuous Mapping Theorem (Contd.)

Example 13

Consider µ̂(4)

n from Example 5. We show µ̂(4)

n
pæ µ in four steps:
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Continuous Mapping Theorem (Contd.)

Example 14

Consider ‡̂2

n defined in Example 3. We show


‡̂2
n

pæ ‡ in four steps:
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Convergence in Distribution

Examples 11 and 13 showed that both µ̂(3)

n and µ̂(4)

n are consistent for ◊.

Û But: Consistency does not imply that the choice of estimator is
irrelevant even for large n: Could have di�erent variances.

We introduce the concept of convergence in distribution:
Û Allows to assess dispersion of estimators as n grows large.
Û Allows to make approximate probability statements about estimators.

Definition 5 (Convergence in Distribution)

Let Xn, n Ø 1, be a sequence of random variables, and let X be another
random variable. We say Xn converges in distribution to X if

P (Xn Æ t) æ P (X Æ t) , ’t œ . (19)

We write Xn
dæ X .

In words: If Xn
dæ X , then the distribution of Xn is approximately equal

to the distribution of X for large n.
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Central Limit Theorem

The next result is a powerful tool for deriving the asymptotic distribution
of sample averages.

Theorem 4 (Central Limit Theorem; CLT)

Let X1, . . . , Xn
iid≥ X be a random sample. Then

Ôn
!

1

n
qn

i=1
Xi ≠ µ

"

‡
dæ N(0, 1), (20)

where µ © E [X ] and ‡ © sd(X ) > 0.

In words: As n grows large, the distribution of the sample average is
approximately normal.

Û Remarkable because we have not assumed that X is normal!

Notation: We could have stated Equation (20) instead as
Ôn

!
1

n
qn

i=1
Xi ≠µ

"

‡

dæ Z ,
where Z ≥ N(0, 1). As before, we may occasionally use random variables and their
distributions interchangeably.
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Central Limit Theorem (Contd.)

Example 15

Consider µ̂(3)

n from Example 5. By the CLT, we have
Ôn

1
µ̂(3)

n ≠ µ
2

‡
dæ N(0, 1). (21)

Hence, for large n, we may approximate the distribution of µ̂(3)

n with

N
!
µ, ‡2/n

"
. (22)

Note that (22) is of little practical help unless we may substitute
parameter estimates for the unknown parameters.
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Slutsky’s Theorem

Good news: The result of the CLT continues to hold when parameter
estimates are substituted for unknown parameter values.

Theorem 5 (Slutsky’s Theorem)

Let An, n Ø 1, and Bn, n Ø 1, be sequences of random variables. Let A be
another random variable and b œ . If An

dæ A and Bn
pæ b, then

Bn + An
dæ b + A, (23)

and

BnAn
dæ bA. (24)

If in addition b ”= 0, then also

An/Bn
dæ A/b. (25)
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Slutsky’s Theorem (Contd.)

Example 16

Consider ‡̂2

n and µ̂(3)

n from Example 3 and 5. Consider

Zn ©

Ôn
1

µ̂(3)

n ≠ µ
2

‡̂n
= ‡

‡̂n

Ôn
1

µ̂(3)

n ≠ µ
2

‡
,

so that Slutsky’s suggests taking An ©
Ôn

!
µ̂(3)

n ≠µ
"

‡ and Bn © ‡
‡̂n

. Then,
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Slutsky’s Theorem (Contd.)

Example 17

Consider ‡̂2

n and µ̂(4)

n from Example 3 and 5. We want to show that

Ôn
1

µ̂(4)

n ≠ µ
2

‡̂n

dæ N(0, 1).

We have
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Standard Errors

Informally, Examples 16 and 17 show that the sampling distribution of
the estimators can be approximated with N(µ, ‡̂2

n
n ). For this purpose,

practitioners often use so-called standard errors.

Definition 6 (Standard Error)

Let ◊̂n and ‡̂n be estimators such that
Ôn

1
◊̂n ≠ ◊

2

‡̂n

dæ N(0, 1). (26)

The standard error of ◊̂n is defined as

se
1

◊̂n
2

= ‡̂nÔn . (27)

For large n, we may approximate the sampling distribution of an estimator
◊̂n for ◊ with

Ôn≠normal asymptotic distribution by N(◊, se(◊̂n)2).
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Confidence Intervals

Researchers often construct asymptotic confidence intervals to succinctly
characterize the approximate sampling distribution:

Theorem 6

Let ◊̂n be an estimator for ◊ such that (26) holds. For – œ (0, 1), consider

Cn =
Ë
◊̂n ≠ z1≠ –

2
se(◊̂n), ◊̂n + z1≠ –

2
se(◊̂n)

È
, (28)

C+

n =
Ë
◊̂n ≠ z1≠–se(◊̂n), Œ

2
, (29)

C≠
n =

1
≠Œ, ◊̂n + z1≠–se(◊̂n)

È
, (30)

where z1≠a © �≠1 (1 ≠ a) is the 1 ≠ a quantile of a standard normal.
Cn, C+

n and C≠
n are asymptotically valid 1 ≠ – confidence intervals. I.e.,

P(◊ œ C̃n) æ 1 ≠ –, (31)

for C̃n = Cn, C+

n , C≠
n .
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Confidence Intervals (Contd.)

Proof.

We prove the theorem only for the symmetric confidence interval Cn.
Proofs for C+

n and C≠
n are left as a self-study exercise.
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Bivariate Central Limit Theorem

Slutsky’s Theorem considered the joint convergence of sequences of
random variables when one of the sequences converges to a constant.

Û Need tools to understand joint convergence when both sequences
converge to a random variable. Fortunately, we have the next result:

Theorem 7 (Bivariate Central Limit Theorem)

Let X̃1, . . . , X̃n
iid≥ Y be a sample or bivariate random vectors where

X̃i = (X1,i , X2,i) and X̃ = (X1, X2). Then

Ô
n

A
1
n

nÿ

i=1

X̃i ≠ µ

B
dæ N(0, �), (32)

where µ © E [X̃ ] and

� © Var(X̃ ) =
5

Var(X1) Cov(X1, X2)
Cov(X1, X2) Var(X2)

6
. (33)
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Bivariate Central Limit Theorem (Contd.)

Example 18

Consider a sample (Y1, X1), . . . , (Y1, X1) iid≥ (Y , X ) where
X ≥ Bernoulli(p) with unknown p œ (0, 1). Suppose we are interested in
the joint distribution of the estimators

En [YX ] = 1
n

nÿ

i=1

YiXi , and En [Y (1 ≠ X )] = 1
n

nÿ

i=1

Yi(1 ≠ Xi). (34)

By the (bivariate) CLT, we have
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Bivariate Slutsky’s Theorem

As was the case with the univariate CLT, it’s bivariate analogue is
particularly useful when combined with a Slutsky-type result:

Theorem 8 (Bivariate Slutsky’s Theorem)

Let An, n Ø 1, and Bn, n Ø 1, be sequences of bivariate random vectors
variables. Let A be another bivariate random vector and b œ 2. If
An

dæ A and Bn
pæ b, then

An + Bn
dæ A + b, (35)

and

B€
n An

dæ b€A. (36)
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Bivariate Slutsky’s Theorem (Contd.)

Example 19

Let An, n Ø 1 and Bn, n Ø 1 be sequences of bivariate random vectors
such that An

dæ N(0, �) and Bn
pæ b œ 2. By Slutsky’s Theorem,

B€
n An

dæ b€N(0, �) d= N(0, b€�b),

where the last equation follows from Lemma 4c of Lecture 2A.

Suppose now that Zn, n Ø 1, such that Zn
dæ N(0, I2), and �̂n, n Ø 1 is a

sequence of estimators such that �̂≠1

n exists and �̂n
pæ �. By the CMT,

whenever �≠1 exists. Hence, by Slutsky’s Theorem,
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Bivariate Slutsky’s Theorem (Contd.)

Example 20

Consider the setting of Example 18 and construct the estimator

En[YX ] ≠ En[Y (1 ≠ X )] =
5

1
≠1

6€ 5
En[YX ]

En[Y (1 ≠ X )]

6
. (37)

Hence, it follows from Example 18 and Slutsky’s Theorem that
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Outline

1. Estimators

2. Finite Sample Properties
Û Bias
Û Variance
Û The Bias-Variance Trade-O�

3. Large Sample Properties
Û Consistency
Û Asymptotic Distribution

4. On the Interpretation of Estimates
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On the Interpretation of Estimates

Thus far, we have exclusively discussed estimators ◊̂n for a parameter ◊.
Û ◊̂n is a function of the sample X1, . . . , Xn ≥ X and thus random.
Û How does real-world data come in?

Data is a realization of our sample X1, . . . , Xn.
Û The data we have collected is the collection of numbers: x1, . . . , xn.

An estimate is a realization of our estimator ◊̂n:
Û The estimator ◊̂n(X1, . . . , Xn) is a random variable;
Û The estimate ◊̂n(x1, . . . , xn) is a number.

This distinction between estimators and estimates can lead to confusion.
Û We can make probabilistic statements about ◊̂n(X1, . . . , Xn).
Û We cannot make probabilistic statements about ◊̂n(x1, . . . , xn).

Notation: To make matters worse, ◊̂n often denotes both the estimator (random) and
the estimate (fixed), so that you have to figure it out yourself from context!
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On the Interpretation of Estimates (Contd.)

The confusion between estimators (random) and estimates (fixed) is
particularly severe in the context of confidence intervals.

Recall that an asymptotic 1 ≠ – confidence interval is such that

P(◊ œ Cn) æ 1 ≠ –.

Let cn denote a realization of Cn (i.e., what you computed using data).
Û It is correct to say Cn covers ◊ w.p. (tending to) 1 ≠ –.
Û It is incorrect to say cn covers ◊ w.p. (tending to) 1 ≠ –.
Û P(◊ œ cn) = {◊ œ cn} œ {0, 1}. This is a comparison of numbers!
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On the Interpretation of Estimates (Contd.)

Statistics courses often introduce the idea of repeated experiments to
interpret confidence intervals:

Û “If I were to repeat the same experiment again and again, each time
computing a 1 ≠ – confidence interval, then the confidence intervals
would cover the true parameter 100(1 ≠ –)% of the time.”

This interpretation is correct but requires some mental gymnastics.
Û The same experiment is seldom repeated many times.
Û Only hypothetically reassuring.

A more useful interpretation is the idea of many unrelated experiments:
Û In your career, you are going to calculate many 1 ≠ – confidence

intervals for unrelated parameters. Of these confidence intervals,
100(1 ≠ –)% cover the corresponding true parameter.

What does this tell you about whether a specific ◊ is in a computed cn?
Û Nothing! You are correct 100(1 ≠ –)% of the time, but you’ll never

know when. (If you’re discontent: Check out Bayesian statistics.)
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On the Interpretation of Estimates (Contd.)

Example 21

Consider µ̂(3)

n from Example 5. Suppose that we collected data and that
Û µ̂(3)

n = 10;

Û se(µ̂(3)

n ) = 3.

Then, an asymptotic 1 ≠ – confidence interval given by

cn = (38)

Here cn denotes a realization of the confidence interval Cn:
Û We’ve collected data (a realization of our sample);

Û Computed the estimator µ̂(3)

n and its standard error se(µ̂(3)

n );
Û Calculated a 1 ≠ – confidence interval cn.

What is P(◊ œ cn)?
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On the Interpretation of Estimates (Contd.)

Example 22

The GRE is a standardized test required for admission to many graduate
programs in the US. Test-takers receive three scores (Verbal, Writing,
and Quantitative). Below is a screenshot from their documentation.

(Don’t get confused by the di�erent terminology: SEMs are essentially
the same as the standard errors discussed earlier.)

Suppose that a student received a quantitative score of 153 (out of 170).
Then a 95% confidence interval for her “true score” is given by

cn = (39)
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On the Interpretation of Estimates (Contd.)

Example 22 (Contd.)

How di�cult is it to get the interpretation of asymptotic confidence
intervals correct?

Û It turns out: Di�cult enough for the GRE...

In the “GRE Guide to the Use of Scores” (link), they write:
Û “consider a test taker who obtained a GRE Quantitative test score of

153. [...] we can be 95% confident that the test taker’s true score
would be between 149 and 157.”

This is precisely the incorrect interpretation of confidence intervals!

What makes this more amusing is that the title of the corresponding
section is “Interpret GRE Scores Carefully [...]”.

(We all need a little bit of joy in our life, but typically it’s appreciated
when you don’t make too much fun of others’ statistics skills.)
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Summary

This concludes the Part A of our statistics review.
Û Introduced the sample analogue principle to develop estimators;
Û Discussed finite sample properties of estimators, in particular, their

bias, variance, and MSE;
Û Generalized the concept of convergence to random variables via

convergence in probability and convergence in distribution;
Û Studied large sample properties of estimators, in particular, their

consistency and asymptotic distribution.

A key insight was that under fairly general conditions, approximate
probabilistic statements about estimators can be made using their
asymptotic distribution.

Û In Part B, we discuss how estimators and their (approximate)
sampling distributions can be leveraged to assess whether the true
parameter ◊ takes a particular value, say, ◊0.

Û This is known as hypothesis testing.
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