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Recap

In Part A of the statistics review discussed estimation:
▷ Developed estimators via the sample analogue principle;
▷ Characterized estimators with finite and large sample properties.

Our analysis highlighted that an estimator θ̂n is a random variable and
may thus differ from the true (fixed) parameter θ.

In Part B, we consider the question of whether the true parameter is
equal to a particular value or within a particular set.

▷ For example, when interested in the expected returns to education,

τ = EU [g(1, U) − g(0, U)|W = 1] (1)

we may be particularly curious about whether τ > 0.

The formal analysis of such questions is known as hypothesis testing.
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Outline

1. Hypothesis Testing
▷ Definitions
▷ Two-Sided Hypothesis Testing
▷ One-Sided Hypothesis Testing

2. Hypothesis Testing and Confidence Intervals

These notes benefit greatly from the exposition in Wasserman (2003) and the
lecture notes of Prof. Max Tabord-Meehan.
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Hypothesis Testing

Our analysis begins with defining a hypothesis to be tested.

Let θ denote the parameter of interest and Θ its possible values.

Consider a partition of Θ into two disjoint subsets Θ0 and Θ1 and that
we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. (2)

Some terminology:
▷ H0 is referred to as the null hypothesis;
▷ H1 is referred to as the alternative hypothesis;
▷ When Θ0 = θ0 is a single element, H0 is a simple hypothesis;
▷ When Θ0 is a non-singleton set, H0 is a composite hypothesis.
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Hypothesis Testing (Contd.)

Example 1
Let Y denote hourly wages and W denote being a college graduate.
Do college graduates earn upwards of $600 a week?

To formulate a corresponding hypothesis, let µY |1 ≡ E [Y |W = 1]. Then

H0 : µY |1 ≥ 600 versus H1 : µY |1 < 600.

Here H0 is a composite hypothesis.

If we had instead asked, “Do college graduates earn $600 a week?”, the
corresponding hypothesis would be

H0 : µY |1 = 600 versus H1 : µY |1 ̸= 600.

Here H0 is a simple hypothesis.
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Hypothesis Testing (Contd.)

Hypotheses pose economic questions in terms of statistical parameters.
▷ Now need a procedure to answer these questions.

For this purpose, define a test statistic Tn, which denotes a known
function of the sample X1, . . . , Xn ∼ X .

▷ Tn(X1, . . . , Xn) is a function of random variables and hence random.

Hypothesis testing finds an appropriate region R ⊂ supp Tn such that

Tn ∈ R ⇒ reject H0,

Tn ̸∈ R ⇒ don’t reject H0.

R is known as the rejection region. We exclusively consider R of the form

R(c) = {t ∈ R | t > c} , (3)

for a critical value c ∈ R. Note: “large” Tn is evidence against H0.
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Type I and Type II Errors
Because Tn is random, we are bound to make errors at some point.

Outcomes of Hypothesis Testing

Don’t Reject H0 Reject H0

H0 true correct type I error
H0 false type II error correct

We will need to trade-off type I error and type II errors in our analysis.
▷ The less likely we make type I errors, the more likely are type II

errors (and vice versa).
▷ We often focus on controlling the probability of a type I error.

Why? Wasserman (2003) has a nice analogy: “Hypothesis testing is like
a legal trial. We assume someone is innocent unless the evidence strongly
suggests that they are guilty. Similarly, we don’t reject H0 unless there is
strong evidence against H0.”
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Type I and Type II Errors (Contd.)

A test is characterized by its type I and type II error probabilities.

Definition 1 (Size and Power)
The size (or: significance level) of a test is α ∈ (0, 1) such that

α = P (Tn ∈ R(cα) | H0 is true) = P (Tn > cα | H0 is true)
= P (reject H0 | H0 is true) = P (type I error) .

(4)

The power of a test is defined as

P (type II error) = P (don’t reject H0 | H0 is false)
= P (Tn ≤ cα | H0 is false)
= P (Tn ̸∈ R(cα) | H0 is false) .

(5)

In practice, we choose a critical value cα s.t. our test has the desired size.
▷ This controls the probability of a type I error.
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Type I and Type II Errors (Contd.)

In practice, economists often consider a size of α = 0.05 appropriate.
▷ This is rather arbitrary: Is 1/20 rare enough?
▷ Practitioners may disagree on the size they would like to consider.

The next definition allows for side-stepping the issue of pre-specified sizes.

Definition 2 (p-Value)
The p-value of a test is defined as

inf{α ∈ (0, 1) | Tn ∈ R(cα)}, (6)

that is, the smallest size of the test such that H0 would be rejected.

Small p-values are interpreted as evidence against H0:
▷ The smaller the p-value, the stronger the evidence against H0.

Importantly: Large p-values are not evidence in favor of H0!
▷ Large p-values may also occur because our test has low power.
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Two-Sided Hypothesis Testing

Let’s make things more concrete: Consider a sample X1, . . . , Xn
iid∼ X .

▷ Suppose we are interested a parameter θ ∈ R (e.g., θ = E [X ]), and
that we developed an estimator θ̂n such that(

θ̂n − θ
)

se(θ̂n)
d→ N(0, 1). (7)

Is θ equal to a particular value, say, θ0?

For this purpose, we consider testing

H0 : θ = θ0 versus H1 : θ ̸= θ0. (8)

We are now in need of an appropriate test statistic Tn and a
corresponding critical value cα such that the size of our test is α ∈ (0, 1).
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Two-Sided Hypothesis Testing (Contd.)
Given the standard normal limit of (7), a natural choice of test statistic is

Tn =
∣∣∣∣
(

θ̂n − θ0

)
se(θ̂n)

∣∣∣∣ (9)

▷ Recall that we reject H0 if Tn is “large”.
▷ Here, Tn increases in deviations of θ̂n from θ0: Seems sensible!

The following theorem shows that Tn is indeed a useful test statistic:

Theorem 1
Let θ̂n be an estimator for θ such that (7) holds. Then for Tn defined by
(9), it hold that

P(Tn > z1− α
2
| H0 is true) → α, (10)

where z1− α
2

= Φ−1(1 − α
2 ) is the 1 − α

2 quantile of a standard normal.
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Two-Sided Hypothesis Testing (Contd.)

Proof.

Note: It’s worth memorizing that when α = 0.05, we have z1− α
2

≈ 1.96.
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Two-Sided Hypothesis Testing (Contd.)

Example 2
Consider the test statistic Tn defined in equation (9). By Theorem 1, we
reject H0 : θ = θ0 at significance level α when

Tn > z1− α
2
. (11)

Hence, the p-value is given by
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One-Sided Hypothesis Testing
Instead of the simple hypothesis considered in (18), suppose we test

H0 : θ ≤ θ0 versus H1 : θ > θ0, (12)

or

H0 : θ ≥ θ0 versus H1 : θ < θ0. (13)

Recall that we want large Tn to be evidence against H0.
▷ For H0 : θ ≤ θ0, choose

Tn =

(
θ̂n − θ0

)
se(θ̂n)

(14)

▷ For H0 : θ ≥ θ0, choose

Tn =
−

(
θ̂n − θ0

)
se(θ̂n)

(15)
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One-Sided Hypothesis Testing
The next result shows that these are indeed useful test statistics:

Theorem 2
Let θ̂n be an estimator for θ such that (7) holds. Then for Tn defined by
(14), it hold that

P(Tn > z1−α| H0 is true) → α, (16)

where z1−α = Φ−1(1 − α) is the 1 − α quantile of a standard normal.
An analogous result holds for Tn defined by (15).

Proof.

Note: It’s worth memorizing that when α = 0.05, we have z1−α ≈ 1.64.
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One-Sided Hypothesis Testing

Example 3
Consider the test statistic Tn defined in equation (14). By Theorem 2,
we reject H0 : θ = θ0 at significance level α when

Tn > z1−α. (17)

Hence, the p-value is given by
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Hypothesis Testing and Confidence Intervals
Consider the following thought experiment: Suppose you test

H0 : θ = θ̃0 versus H1 : θ ̸= θ̃0, (18)

for all possible values θ̃0 ∈ Θ using a test of size α.
▷ Whenever H0 is not rejected, you write down the value of θ̃0.
▷ This gives the set (say, Cn) of θ̃0 for which H0 would not be rejected.
▷ Cn summarizes the collection of hypotheses we would not reject.

It turns out that this newly constructed set Cn is the confidence interval
discussed in Part A of the statistics review!

▷ This is known as the duality between hypothesis testing and
confidence intervals.

This implies that we can use a 1 − α confidence interval to test
hypothesis at a significance level α.

▷ Step 1: Construct the 1 − α confidence interval cn;
▷ Step 2: Check whether θ0 ∈ cn. If not, reject H0 : θ = θ0.

Wiemann Hypothesis Testing 21 / 24



Hypothesis Testing and Confidence Intervals (Contd.)

To see this dual relationship, recall that we would include θ̃0 in the set Cn
if our test of size α does not reject H0 : θ = θ̃0. That is, whenever

Tn ≤ cα. (19)

Take Tn as defined in Equation (9) so that cα = z1− α
2
. Then

Hence, the set of θ̃0 for which we don’t reject H0 at significance level α is

which is identical to our definition of the symmetric confidence interval.
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Summary

This concludes our statistics review:
▷ Discussed the construction of estimators;
▷ Introduced tools to study the properties of estimators;
▷ Developed procedure for testing hypothesis about parameters.

Now we’re fully equipped to delve into the analysis of causal questions!
▷ Can leverage our probability expertise for Task 1 (Definition) and

Task 2 (Identification).
▷ Can leverage our statistics expertise for Task 3 (Estimation).

To get things started properly, we revisit the returns to education
example in the next lecture.
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