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Introduction

Lecture 4 provided an introduction to causal inference:
Û Used the all caused model to define potential outcomes;
Û Introduced and discussed common causal parameters;
Û Concluded that assumptions are necessary to learn about causal

parameters from data due to the fundamental problem of causal
inference;

Today: Causal inference under the Random Assignment assumption.

Assumption leveraged for identification in experimental settings:
Û Laboratory experiments: E.g., in behavioral economics.
Û Field experiments: E.g., in development economics.

We focus on binary (or discrete) policy variables today.
Û General policy variables in Lecture 6.
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The All Causes Model

We begin our analysis with the all causes model:

Y = g(W , U), (1)

where
Û Y © an outcome;
Û W © an policy;
Û U © all determinants of Y other than W ;
Û (Y , W , U) is a random vector;
Û (Y , W ) are observables and U are unobservables;
Û and an economic model g : supp W ◊ supp U æ supp Y .

The potential outcomes (with the policy fixed) are defined as

g(w , U), ’w œ supp W . (2)
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Random Assignment
In the context of the all causes model, we may state the random
assignment assumption as follows:

Assumption 1 (Random assignment; RA)
Let (Y , W , U) be a random vector with joint distribution characterized
by Equation (1). Random assignment assumes

W ‹‹ U. (3)

In words: the policy W is independent of all other determinants U.
Û Assumption violated if (parts of) U a�ect the policy W .
Û Most plausible in experimental settings where W is randomly and

independently assigned.
Û Most problematic in settings where agents make policy choices.
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Random Assignment (Contd.)

Example 1
Consider the analysis of Gneezy et al. (2019), who investigate the role of
student e�ort for their performance in the PISA test. The authors
conduct a randomized control trial (RCT) where a randomly chosen
subset of students receive a financial incentive to do well on the test.
The idea is that financial incentives increase student e�ort. Here,

Û Y © a student’s PISA score;
Û W © an indicator for having received financial incentives to do well

on the PISA test;
Û U © determinants of Y other than W (e.g., education quality).

Does RA seem plausible here?
Û RA fails if students who were given the incentive were systematically

di�erent (e.g., smarter) than those who were not.
Û Unless the experiment was compromised, RA is plausible by design.

Note: This example is due to a discussion in Prof. Alex Torgovitsky’s course.
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Random Assignment (Contd.)

Example 2
Recall the returns to education example discussed in previously. Here,

Û Y © hourly wages;
Û W © and indicator for having obtained a college degree;
Û U © determinants of Y other than W , e.g., intellect or connections.

Does RA seem plausible here?
Û RA fails if students who obtained a college degree were systematically

di�erent than those were not.
Û RA is implausible as we believe (or: hope?) that obtaining a college

degree requires requires a certain level of e�ort / intellect.
Û Students are not obtaining a college degree as if it was random: We

should expect a substantial association between obtaining a college
degree and socio-economic backgrounds.
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Identification

We now turn to identification of the ATE, ATT, and ATU.

For this purpose, we rely on the following result:

Corollary 1
Let (W , U) be random variables such that W ‹‹ U. Then

EU [h(U)|W ] = EU [h(U)], (4)

for all functions h.

Proof.
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Identification (Contd.)
Theorem 1
Let (Y , W , U) be a random vector with joint distribution characterized

by Equation (1). Under RA, the ATT and ATU are point-identified.

Proof.
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Identification (Contd.)

Identification of the ATE follows from Theorem 1.

Corollary 2
Let (Y , W , U) be a random vector with joint distribution characterized

by Equation (1). Under RA, the ATE is point-identified.

Proof.
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Identification (Contd.)
Notice that under RA, we have

ATE = ATT = ATU. (5)

Û In words: The expected e�ect of the treatment for a randomly
chosen individual is the same as the expected e�ect of the treatment
for a randomly chosen treated/untreated individual.

Û Since individuals are assumed to be randomly assigned to treatment
under RA, this makes sense!

Assumption RA explicitly restricts selection into treatment.
Û If individuals make policy decisions themselves, then likely W ”‹‹ U.

Û Unfortunate because economics studies often optimizing agents, i.e.,
agents making policy decisions.

Field experiments are occasionally described as the “gold standard.”
Û Experiments allow for RA by design ∆ ATE is identified.
Û But what if we are interested in selection?
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Case Study: Gneezy et al. (2019)
Let us revisit the analysis of Gneezy et al. (2019).

The authors are interested in a causal question along the lines of:
Û What is the change in the PISA score for students if they had

extorted more e�ort?

But measuring e�ort is challenging. Consider instead:
Û What is the change in the PISA score for students if they had

received a financial incentive to do well?

The idea is that financial incentives increase student e�orts.
Û Increase in incentives ∆ increase in e�ort.

We now complete the three tasks in the analysis of causal questions:
1. Definition of hypotheticals & a causal parameter of interest;
2. Parameter identification;
3. Parameter estimation and inference from real data;
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Task 1: Definition

We begin with the all causes model. Recall (1). Here,
Û Y © a student’s PISA score;
Û W © an indicator for having received financial incentives to do well

on the PISA test;
Û U © determinants of Y other than W (e.g., education quality).

We leave g unspecified for full generality.

A causal parameter that informs an answer to the causal question of
interest is the expected e�ect of the financial incentive on a student’s
PISA score for a randomly selected student. That is,

ATE = E [g(1, U) ≠ g(0, U)]. (6)

This completes task 1 (Definition)!
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Task 2: Identification

The ATE is a function of (the distribution of) the unobservables U.
Û Need an identifying assumption to (su�ciently) restrict the joint

distribution of (Y , W , U).

Gneezy et al. (2019) assign incentives to a random subset of students.
Û RA is plausible by design.

We continue our analysis with assuming RA.
Û Under RA, the ATE is point identified by Corollary 2.

This completes task 2 (Identification)!
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Task 3: Estimation
Task 3 (Estimation & Inference) will require two key steps:

Û Construct a useful estimator of the ATE under RA.
Û Characterize its sampling distribution.

Fortunately, our identification proof of the ATE under RA was
constructive. In particular, we showed that we can write the ATE as

ATE = µY |1 ≠ µY |0, (7)

where µY |w © E [Y |W = w ] for w œ {0, 1}.

This is just a di�erence in two familiar conditional expectations:
Û Problem Set 2 constructed and analyzed an estimator µ̂Y |1 for µY |1;
Û TA Session 3 constructed and analyzed an estimator µ̂Y |0 for µY |0.

The sample analogue estimate of the ATE is then simply given by

‰ATE = (8)
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Task 3: Estimation (Contd.)

Suppose we observe a sample (Y1, W1), . . . , (Yn, Wn) iid≥ (Y , W ).

Our previous analysis of µ̂Y |1 and µ̂Y |0 showed that
!
µ̂Y |w ≠ E [Y |W = w ]

"

se(µ̂Y |w )
dæ N(0, 1), w = 0, 1, (9)

where

se(µ̂Y |w ) =
‡̂Y |w

Ô
n

Ò
1
n

qn
i=1 w (Wi)

, (10)

with ‡̂Y |w being the sample analogue estimator for sd(Y |W = w).
Û Characterizes the marginal sampling distribution of µ̂Y |1 and µ̂Y |0.
Û Now need the joint sampling distribution of µ̂Y |1 and µ̂Y |0.
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Task 3: Estimation (Contd.)
We proceed in steps:

1. Show that

Ô
n

35
µ̂Y |1
µ̂Y |0

6
≠

5
µY |1
µY |0

64
dæ N(0, �).

2. Derive expression for � in terms of expectations of (Y , W ).

3. Find t and ‡2
ATE such that Use

Ô
nt

€
35

µ̂Y |1
µ̂Y |0

6
≠

5
µY |1
µY |0

64
=

Ô
n

1
‰ATE ≠ ATE

2
dæ N

!
0, ‡2

ATE
"

4. Construct a consistent estimate ‡̂2
ATE for ‡2

ATE.

5. Show that

‡̂≠1
ATE

Ô
n

1
‰ATE ≠ ATE

2
dæ N(0, 1).
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Task 3: Estimation (Contd.)

2. Derive expression for � in terms of expectations of (Y , W ).
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Task 3: Estimation (Contd.)

3. Find t and ‡2
ATE such that Use

Ô
nt

€
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Task 3: Estimation (Contd.)

4. Construct a consistent estimate ‡̂2
ATE for ‡2

ATE.
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Task 3: Estimation (Contd.)
5. Show that

‡̂≠1
ATE

Ô
n

1
‰ATE ≠ ATE

2
dæ N(0, 1).
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Task 3: Estimation (Contd.)

Our analysis implies that for large n, we may approximate the sampling
distribution of ‰ATE by a normal distribution. I.e.,

‰ATE d¥ N

1
ATE, se

1
‰ATE

22
, (11)

where

se

1
‰ATE

2
= ‡̂ATEÔ

n
. (12)

For – œ (0, 1), we may thus construct a 1 ≠ – confidence interval by

Cn = (13)

This completes the theoretical analysis: Now we need to implement it!
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ATE Estimation in R

ATE Estimation in R under Assumption RA⌥
# Find treated and untreated individuals
y_1 <- y[w == 1]
y_0 <- y[w == 0]

# Compute conditional averages
mu_1 <- mean(y_1)
mu_0 <- mean(y_0)

# Compute standard error
n <- length (y)
p_1 <- mean(w == 1)
p_0 <- mean(w == 0)
se <- sqrt (( var(y_1) / p_1 + var(y_0) / p_0) / n)

# Compute confidence set for pre - defined alpha
c_ alpha <- qnorm (1 - alpha / 2)
conf <- mu_1 - mu_0 + c(-1, 1) * c_alpha * se⌦⌃ ⇧
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Estimation Results

Using the data from Gneezy et al. (2019), we can compute

‰ATE =

and

se

1
‰ATE

2
=

A 95% confidence interval is thus given by

cn =

Note: On Canvas, you can find the datafile pisa19.csv used for calculating the
estimates. The corresponding R script is on GitHub: example pisa19.
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Hypothesis Testing

Suppose now that we are worried about the incentives having a negative
e�ect, on average. We may then consider a test where

H0 : ATE Æ 0 versus H1 : ATE > 0.

We can construct a test statistic as discussed in Lecture 3B. In particular,

Tn =

Instead of pre-specifying a –, we decide to calculate a p-value via

p-value =
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Hypothesis Testing (Contd.)

We implement the hypothesis text in R using the following code:

Testing H0 : ATE Æ ate 0 versus H1 : ATE > ate 0 in R⌥
# Compute test - statistic
Tn <- (mu_1 - mu_0 - ate_0) / se
# Compute p-value
1 - pnorm(Tn)⌦⌃ ⇧

Using the data of Gneezy et al. (2019), we compute

Tn = , and p-value =

Therefore, on a 5% significance level, we fail to reject H0 : ATE Æ 0.
What’s the correct interpretation?

Û “We are 95% sure that incentivizing students worsened their score.”
Û “There is insu�cient evidence to reject that incentivizing students

worsened their score on a 5% significance level.”
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Evaluating Random Assignment

RA is a simple but very strong restriction on the joint of (Y , W , U).
Û Experiments (or RCTs) are designed to ensure RA is satisfied.
Û But: “Vertrauen ist gut, Kontrolle ist besser.” (German proverb)
Û Researchers need to convince their audience that RA is plausible.

Given the strength of the RA assumption, it’s worth contemplating
whether we can check it’s plausibility using data.

Û Because the sampling process provides no information on the
entirety of U, it’s impossible for us to verify RA.

Û But RA has implications that we can test. If these implications
implications don’t hold, this may suggest we should question
whether RA holds.

Û In practice: “The absence of bad news is good news.”
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Balance Tests

Recall that RA assumes W ‹‹ U.

Now suppose that we observe some variables in U, say X .
Û X commonly referred to as covariates.

Û Covariates are not policy variables of interest, but are observables.
Û RA implies W ‹‹ X .

Since both are observable, we may construct a test! In particular, W ‹‹ X

implies E [X |W = 1] = E [X |W = 0]. Then we could test whether

H0 : µX |1 = µX |0 versus H1 : µX |1 ”= µX |0,

where µX |1 © E [X |W = 1] and µX |0 © E [X |W = 0].

This test is referred to as a balance test.
Û Assesses whether individuals with di�erent characteristics (X ) are

randomly distributed across treated and untreated groups.
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Balance Tests (Contd.)
Suppose we observe (Y1, W1, X1), . . . , (Yn, Wn, Xn) iid≥ (Y , W , X ).

Do we now have to redo our asymptotic analysis?
Û Fortunately: No! It’s a comparison of conditional means as before.
Û Essentially just as before but with X instead of Y .

Let µ̂X |1 and µ̂X |0 denote sample analogue estimators for µX |1 and µX |0,
respectively. Then we can construct a test-statistic for a two-sided test:

Tn =

The corresponding p-value is given by

p-value =

What does it mean to reject the balancing test?
Û Should raise eyebrows: Variables should be ¥ equal across groups.
Û But not perfect: Type I errors can’t be ruled-out.
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Balance Tests (Contd.)
Example 3
Let’s revisit Gneezy et al. (2019). Let the X denote a student’s age. We
compute

µ̂X |1 ≠ µ̂X |0 = , and se
!
µ̂X |1 ≠ µ̂X |0

"
=

And also

Tn = , and p-value =

Therefore, on a 5% significance level, we reject H0 : µX |1 = µX |0.
Û “There is su�cient evidence to reject that incentivized and un-

incentivized students have the same expected age on a 5% signifi-
cance level.”

Û Incentivized students are about 1 month younger than non-
incentivized students. Doesn’t raise confidence hugely...

Û ... but also doesn’t prove that RA is violated: Type I errors exist!
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Binning Estimators

All of the estimators considers thus far are examples of binning

estimators. For a random vector (Y , W ), a binning estimator for

µY |w © E [Y |W = w ], (14)

is given by

µ̂Y |w ©
qn

i Yi w (Wi)qn
i w (Wi)

, (15)

’w œ supp W .

By defining Xw © w (W ), the asymptotic analysis from Problem Set 2
applies, so that you have already derived it’s asymptotic distribution...

... at least for the case when P(W = w) ”= 0.
Û Recall that for discrete W , w œ supp W … P(W = w) > 0;
Û But for continuous W , P(W = w) = 0, ’w œ supp.
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Binning Estimators (Contd.)
We thus need an alternative estimator when W is not discrete.

Note that even when W is discrete, estimation variance may be very
large if P(W = w) is very small (but not zero), since we showed that

Ô
n

!
µ̂Y |w ≠ µY |w

" dæ N

3
0,

Var(Y |W = w)
P(W = w)

4
, (16)

with a division by a very small number to obtain the asymptotic variance.

This is known as the small bin problem. Binning estimator not versatile.
Û Unfortunate because you showed in problem set 2 that

E

C
µ̂Y |w

----
nÿ

i=1
w (Wi) > 0

D
= µY |w .

Û May prefer some bias if variance is lower: A bias-variance trade-o�!

We thus want an alternative estimator when P(W = w) is small.
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Summary

We’ve completed our first complete causal analysis today!
Û Used the all causes model to define the ATE, which we deemed

informative for the causal question of interest;
Û Assumed Random Assignment to prove identification of the ATE;
Û Constructed, analyzed, and computed an estimator of the ATE;

In the process, we stumbled upon a statistical di�culty:
Û The binning estimator is infeasible for non-discrete policies...
Û ... and potentially undesirable even for discrete policies.

In the next lecture, we introduce simple linear regression to construct
estimates of causal parameters (under RA) when the binning estimator is
infeasible or undesirable.

Û Linear regressions is the estimator in applied economics.
Û Very convenient statistical tool, but challenging to interpret.
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