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Introduction

In lecture 5 discussed the Random Assignment (RA) assumption:
Û Showed that E [Y |W = w ] = E [g(w , U)] under RA;
Û Derived binning estimator for ATE for randomly assigned discrete W .

We maintain RA and discuss estimation of ATEs of the form

ATEw Õ,w = E [g(w Õ, U) ≠ g(w , U)], (1)

where w Õ, w œ supp W . Under RA,

ATEw Õ,w = E [Y |W = w Õ] ≠ E [Y |W = w ]. (2)

Û Can only construct binning estimator when P(W = w Õ) > 0 and
P(W = w) > 0: Not suitable for, e.g., continuous W .

Û Even when W discrete, we showed that the sampling variance of the
binning estimator is inversely related to P(W = w Õ), P(W = w):
May want alternative estimator due to Bias-Variance trade-o�.
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Introduction (Contd.)

We’re in need of an alternative estimator for the CEF E [Y |W = w ].

The alternative estimator we consider is linear regression.
Û The estimator in empirical economics.

Linear regression is easy to compute but very di�cult to interpret.
Û Linear regression does not estimate the CEF directly!
Û Linear regression estimates the best linear approximation of the CEF.

To make this di�cult topic approachable, we take two key steps:
A. Define, analyze and discuss the best linear approximation of the CEF.
B. Derive and characterize the linear regression estimator.

Throughout, we focus on (scalar-valued) random variables.
Û Turn to regression with random vectors after the midterm.
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Outline

1. Best Linear Predictor

2. Properties of the BLP-Residual

3. Interpretation of the BLP-Coe�cient —

Û Descriptive Interpretation using Yitzhaki (1996)
Û Causal Interpretation under Random Assignment

These notes benefit greatly from the lecture notes of Prof. Alex Torgovitsky,

Prof. James Heckman, and Francesco Ruggieri.
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Best Linear Predictor

The best linear approximation to the CEF w.r.t. the L2-loss is commonly
referred to as the best linear predictor.

Û See Problem 4 of Problem Set 3 why this terminology is sensible.

Definition 1 (Best Linear Predictor; BLP)

Let Y and X be random variables. The best linear predictor (BLP) of
the conditional expectation E [Y |X ] is defined as

BLP(Y |X ) = – + X—, (3)

where the BLP-coe�cients – and — are such that

(–, —) œ arg min
–,—œ

E
Ë
(E [Y |X ] ≠ (– + X—))2

È
. (4)

Importantly, the BLP is an approximation to the CEF:
Û BLP(Y |X = x) ”= E [Y |X = x ] except in very special cases!
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Best Linear Predictor (Contd.)

The BLP is one of many possible approximations to the CEF.

Why do we care about the best linear approximation?
Û Many years ago: Easy computation.
Û Conciseness: Just one/two numbers necessary to communicate.
Û Easy interpretation?
Û Mathematical convenience & path dependence.

Why do we care about the L2-loss?
Û Large deviations are penalized more heavily: Cautious approach?
Û Mathematical convenience & path dependence.

There are many alternative approximation approaches considered in
frontier research and industry...

Û ... but you’ll need to take a more advanced econometrics class to
learn about them. (Hopefully this one motivates you to do so!)
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BLP-Coe�cients

BLP-coe�cients are known functions of moments of (Y , X ):

Theorem 1

Let Y and X be random variables. If Var(X ) > 0, then

(–, —) œ arg min
–,—œ

E
Ë
(E [Y |X ] ≠ (– + X—))2

È

… — = Cov(Y , X )
Var(X ) , and – = E [Y ] ≠ E [X ]—.

(5)

Theorem 1 is hugely convenient:
Û Well equipped for analyzing moments of (Y , X );
Û Immediately suggest sample analogue estimator (patience, for now).
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BLP-Coe�cients (Contd.)

Proof.
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Linear Conditional Expectation Functions

The next result gives the special case when the BLP is the CEF.

Corollary 1

Let Y and X be random variables. If E [Y |X ] is linear, that is,

÷–̃, —̃ œ : E [Y |X ] = –̃ + X —̃, (6)

then, whenever Var(X ) > 0, we have

E [Y |X ] = BLP(Y |X ). (7)

Proof.
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Linear Conditional Expectation Functions (Contd.)

For general random variables Y and X , are there good reasons to believe
that E [Y |X ] is linear? Most of the time: No!

Û Economic theory rarely motivates severe functional form restrictions.

However, there is an important setting when E [Y |X ] is linear w/o further
restrictions: When X is a binary random variable.

Corollary 2

Let Y and X be random variables. If X is binary, then E [Y |X ] is linear.

Proof.
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BLP-Residual

The BLP-residual is the error when predicting Y using BLP(Y |X ).
Û Convenient object in the analysis of the BLP.

Definition 2 (BLP-Residual)

Let Y and X be random variables. The BLP-residual Á is defined as

Á = Y ≠ BLP(Y |X ). (8)

Note that

Á = (Y ≠ E [Y |X ]) + (E [Y |X ] ≠ BLP(Y |X )) . (9)

Û Encapsulates minimal-prediction error & BLP-approximation error.

Note: Recall that E [Y |X ] is the best predictor of Y given X. You showed this
yourself in Problem 6 in Problem Set 1!
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Properties of the BLP-Residual

The BLP-residual is mean-zero and uncorrelated to X .
Û Importantly: This is not an assumption!

Lemma 1

Let Y and X be random variables. If Á = Y ≠ BLP(Y |X ), then

E [Á] = 0, and E [ÁX ] = 0. (10)

Proof.

Wiemann The Best Linear Predictor 14 / 30



Properties of the BLP-Residual (Contd.)

In general, the BLP-residual is not mean-independent of X .

Lemma 2

Let Y and X be random variables. Let Á = Y ≠ BLP(Y |X ). If E [Y |X ] is
linear, then

E [Á|X ] = 0. (11)

If E [Y |X ] is not linear, then (11) does not hold in general.

Proof.
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Interpretation of the BLP-Coe�cient —

Note that BLP(Y |X ) is a feature of the joint distribution of (Y , X ) :
Û Purely descriptive;
Û Captures the approximate expected level of Y associated with a

level of X .

Practitioners often calculate the di�erence in BLPs:

BLP(Y |X = x Õ) ≠ BLP(Y |X = x) = (12)

When x Õ ≠ x = 1, we may thus interpret the BLP-coe�cient — as follows:
Û “— captures the approximate expected change in Y associated with

a unit-change in X .”

Terminology is very important to avoid confusion:
Û Need “approximate” to highlight that BLP(Y |X ) ”= E [Y |X ];
Û Need “associated” to emphasize purely descriptive interpretation.
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Interpretation of the BLP-Coe�cient — (Contd.)

When E [Y |X ] is linear, then — has another interpretation:

ˆ

ˆx E [Y |X = x ] (1)= ˆ

ˆx BLP(Y |X = x) = —, (13)

where (1) follows from Corollary 1.
Û If E [Y |X ] is linear, then — is its derivative w.r.t. X .

The interpretation is appealing but is appropriate only in special cases.
Û Would like derivative-interpretation for — when E [Y |X ] is not linear.
Û Yitzhaki (1996) shows that this is possible... with qualifications.
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Yitzhaki’s Theorem

Yitzhaki (1996) shows that — admits a weighted average derivative
interpretation.

Theorem 2 (Yitzhaki’s Theorem)

Let Y and X be random variables. Let — satisfy (4). Then

— =
⁄ Œ

≠Œ

3
ˆ

ˆt E [Y |X = t]
4

Ê(t)dt, (14)

where

Ê(t) = (E [X |X Ø t] ≠ E [X |X < t]) P(X Ø t)P(X < t)
Var(X ) (15)
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Yitzhaki’s Theorem (Contd.)

Proof.

Wiemann The Best Linear Predictor 20 / 30



Yitzhaki’s Theorem (Contd.)
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Yitzhaki’s Theorem (Contd.)

Example 1

Let X ≥ U(0, 1). Then, for any t œ [0, 1], we have

E [X |X Ø t] = , E [X |X < t] =
P(X |X Ø t) = , P(X |X < t) = , Var(X ) =

Hence, for any t œ [0, 1], the Yitzhaki weights are given by

Ê(t) = (16)

By Yitzhaki’s Theorem, it follows that

— = (17)

Which is distinct from the average derivative of E [Y |X ] given by

E
5

ˆ

ˆX E [Y |X ]
6

= (18)
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Yitzhaki’s Theorem (Contd.)

Figure 1: Yitzhaki Weights for Standard Uniform X

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
t

Y
itz

ha
ki

 W
ei

gh
ts

  ω
 (t

)

Notes. Yitzhaki Weights for Standard Uniform X given by Ê(t) = 6t(1 ≠ t) {t œ [0, 1]}. You can

find the code generating the figure on GitHub: lecture plots.R.
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Yitzhaki’s Theorem (Contd.)

The Yitzhaki weights are such that:
Û The weights Ê(t) are s.t. Ê(t) Ø 0, ’t, and

s Œ
≠Œ Ê(t)dt = 1.

Û Maximum weight reached at t = E [X ] (if density exists at E [X ]).
(See Problem 5 in Problem Set 3.)

Yitzhaki (1996) is remarkable:
Û Relates — to a weighted average of the CEF derivative;
Û Gives expression for the weights that allow for precise interpretation;
Û Highlights that precise interpretation is... di�cult!

Are practitioners thinking of Yitzahki’s Theorem when interpreting —?
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Causal Interpretation under Random Assignment

Consider the all causes model discussed in previous lectures:

Y = g(W , U). (19)

When the policy variable W is continuous, a common parameter of
interest is the average structural function (asf):

g1(w) © EU [g(w , U)], (20)

where w is fixed, not conditioned on! (E.g., Blundell and Powell, 2006)
To describe causal e�ects of marginal changes in the policy variables:

g Õ
1
(w) © ˆ

ˆw g1(w). (21)

Practitioners are often content with a summary of g Õ
1
(w):

g Õ
1

© EW [g Õ
1
(W )] . (22)

Û g Õ
1

is the expected change in Y caused by a marginal change in W .
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Causal Interpretation under Random Assignment (Contd.)

g Õ
1

is a function (of the distribution) of U and is thus not identified.
Û Need identifying assumption!

In the last lecture, we saw that under Assumption RA, we have

E [g(w , U)] = E [Y |W = w ]. (23)

Then simply

g Õ
1
(w) = ˆ

ˆw E [Y |W = w ]. (24)

From Yitzhaki’s Theorem, it then follows that under RA, we have

— =
⁄ Œ

≠Œ
g Õ

1
(t)Ê(t)dt. (25)

Û Under RA, may interpret — as weighted average of the asf-derivative;
Û But — is generally distinct from average asf-derivative g Õ

1
.
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Causal Interpretation under Random Assignment (Contd.)

The Yitzhaki interpretation for — in Equation (25) is often challenging.
We thus also discuss a weaker alternative.

Recall that BLP(Y |W = w) is an approximation to E [Y |W = w ].
Û Under RA, E [Y |W = w ] = E [g(w , U)];
Û Hence, BLP(Y |W = w) is an approximation to E [g(w , U)]

whenever RA is assumed (but not generally!).

Assumption RA thus motivates a qualified causal interpretation of —:
Û “Under RA, — captures the approximate expected change in Y

caused by a unit-change in W .”
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Summary

Today, we introduced BLP(Y |X ) as approximation to E [Y |X ].
Û Showed that the BLP-coe�cients are well-defined when Var(X ) > 0;
Û Hopeful that this is a useful alternative to the direct analysis of

E [Y |X = x ] when P(X = x) is small.

But there is no free lunch...
Û Approximation of E [Y |X ] makes interpretation of di�erences in

BLP(Y |X ) challenging;
Û Used Yitzhaki’s Theorem to motivate a weighted-average derivative

interpretation of —;
Û Discussed interpretation of — under Assumption RA.

In Part B, we turn to estimating the BLP-coe�cients
Û Introduce the ordinary least squares estimator for (–, —);
Û Analyze its statistical properties.
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