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Summary

In Part A, we introduced BLP(Y|X) as approximation to E[Y|X].
> Showed that the BLP-coefficients are well-defined when Var(X) > 0;

> Discussed interpretation using Yitzhaki's Theorem;

The BLP and its coefficients o« and 3 are theoretical concepts.

In Part B, we bridge the gap between BLP and real data using statistics.

> Develop the ordinary least squares estimator;
> Analyze its statistical properties under an iid sample;

> Apply it to study the California STAR data.

Wiemann Ordinary Least Squares 2 /30



Outline

1. Ordinary Least Squares

2. Estimator Properties
> Bias

> Consistency

> Asymptotic Distribution

3. Case Study: The California STAR Data

Wiemann Ordinary Least Squares

3/ 30



Outline

1. Ordinary Least Squares

2. Estimator Properties
> Bias

> Consistency

> Asymptotic Distribution

3. Case Study: The California STAR Data

Wiemann Ordinary Least Squares

4 /30



Ordinary Least Squares

Let Y and X be two random variables. Throughout, we consider a
random sample (Y1, X1),.. ., (Ya Xa) < (Y, X).

From Lecture 6A, we know that the BLP-coefficients are given by

~ Cov(Y,X)

B = Var(X) and o = E[Y] - E[X]B, (1)

whenever Var(X) > 0.

This suggests sample analogue estimators

s L3EK - (an)(ha
B, = MLZJ\I L[l)g L) (2)
20— (BT)
and
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Ordinary Least Squares (Contd.)

The estimators (&,, 3,) are known as ordinary least squares (OLS)
estimators. This is because they can also be motivated as solutions to
the least-squares sample criterion:

(s o) = argmin = 3 (¥, — ( + XiB))*. (4)

n
a,BER Ty

whenever 1 57 X2 — (2 3°F X,-)2 > 0. In particular, we have:
Rla ) = 43 (- k@)= £ 25> -2 2 2p{arkip) v % 2Lt Xif)'
To Rlaf) = LHTG 232K = O
& <= i -(x)p
,él K[g) - - quX mL(uK[&)X = QL TX # R IK s by, )(é
=-Uhgpn + WAL T)- (4T (5 L34 )/é
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dixt — Gix)
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Ordinary Least Squares (Contd.)

For our analysis, it's useful to rewrite Bn using ¢; = Y; — BLP(Y;|.X;):

B, = —.,‘:ZYI-X,--—L*\&ZY,')(J.;ZK;) % ‘{,-=0£+)(;(§+ £

IR COr Al
= FL(arkpr ) ~(FT(aeXipre)) £ 1)
- Tt
« 52K+ (BLg)p rdlex — o 42K -Gk ) ~GIg) (L Tx)
% Lxr = (5 1x )

:(%Zx-: ~ (T8 )(E L hLuxi -(TE)HIX)

LTS ) Lict ~G1x)"

B /é L WLEX —('LE')( ZX‘)

,.(} LK)

(5)

.S\—
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Bias

Our analysis of the OLS estimator begins with its bias.

We assume here that X is continuous to avoid division by zero with
positive probability (for n > 2).

> Flashbacks? Recall Problem 4d) of Problem Set 2 and the additional
complications non-continuous X would introduce.

The bias of BA,., when X is continuous is given by

Bias(f,) = Elf] — p= || 21° 'G‘“*)“‘W] Vo (0)= 5 Dx-(h e |

Vox, (X)
(x )J (0)

= E[E TLAzXl'El' ’(4' : Q'.IJG ZK‘-)
Vo, (X)

- E&Vb{x)(ﬂ)ﬁ el | - (2Bl |)(4 E’M

= [ (47 Bl 1 ~ (2 (k)|
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Bias

Hence, for continuous X, if E[e;|X;] = 0, then Bias(83,) = 0.
> Does E[e;|X;] = 0 hold generally? No: E[e;X;] =0 %4 Ele;|X;] = 0.
> When do we know that E[g;|X;] = 0? When E[Y|X] is linear.
> When do we know that E[Y|X] is linear? When X is binary.

> Binary X is not continuous, so need to worry about division by zero...

Many textbooks state that the OLS estimator 3, is unbiased for .

> Importantly: Strong assumption are made along the way!
> We showed Bias(3,) = 0 if E[Y|X] linear and X is continuous.

> With binary X, showed conditional unbiasedness in Problem Set 2.

Generally, little reason to believe Bias(BA,,) = 0 in economic applications:

> Economic theory rarely implies linear E[Y|X] with continuous X.

> Horrible news? No: Most estimators are biased in practice...
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Consistency

Theorem 1 ensures OLS satisfies the minimum requirement: Consistency.

Theorem 1

Let Y and X be random variables such that Var(X) > 0, and let (a, )

denote the BLP(Y|X)-coefficients. If (&, 3,) are the OLS estimators
constructed using (Y1, X1), .-, (Ya, Xn) A5 (Y, X), then

i 3 g

Since the OLS estimators are continuous functions of moments of
(Y, X), we can prove this straightforwardly:

> Show 3, & B using WLLN + CMT;
> Show &, = « using WLLN + CMT;

> Then use that marginal convergence in probability implies joint
convergence in probability.
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Consistency (Contd.)
wZ
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Asymptotic Distribution

OLS is asymptotically normal, which is useful for approximating its
sampling variance in practice. Theorem 2 focuses on (3, for conciseness.

Theorem 2

Let Y and X be random variables such that Var(X) > 0, and let (c, 3)

denote the BLP(Y|X)-coefficients. If 5, is OLS estimator for 3

constructed using (Y1, X1), ..., (Y Xa) = (Y, X), then

E[é‘z (X o E[X])Q] (8)
Var(X)? ’

v (B —8) SN (o,

where ¢ = Y — BLP(Y|X).

Note: Classical treatments of OLS would refer to the variance expression in Theorem

2 as the asymptotic variance under heteroskedasticity. By this, they mean the general
case that Var(e|X) is allowed to vary with X. As ¢ is simply the BLP-residual, there is
no obvious reason to think otherwise. We thus don’t highlight this as a special case.
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Asymptotic Distribution (Contd.)

Proof.
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Asymptotic Distribution (Contd.)

i [ M ey B!
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Standard Error

Theorem 2 is of no practical use unless we can replace the expression for
the asymptotic variance by a consistent estimator. Fortunately, we can.

Theorem 3

Let Y and X be random variables such that Var(X) > 0, and let (o, )

denote the BLP(Y|X)-coefficients. If 3, is OLS estimator for 3

constructed using (Y1, X1), ..., (Yn Xu) = (Y, X), then

Mi>/\/(o,1),

N

se(6n)

se(ﬁAn) \/

(9)

where

% = A2 Xi Z,1X>
(%Z, 1X2 Zi:lXi))

(10)

and & = Y; — Xij3,.
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Standard Error (Contd.)

We prove Theorem 3 for X such that E[X] = 0. The more general result
holds, of course, but its proof requires even more painful algebra.

| —a z
Proof. WTS: (L3x -L__(__Lx')z)z &Lafl le L €[5?xJ
' Vo (k)
s & 1 L5 A © — - A 2 - T =
SLEY > w2 (5 G ) GG ) e UE - ) 22
A = A, =6a Loprex)
Voo -6 s+ (A1) by WLt
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OLS Estimation in R

This completes the theoretical analysis: Now we need to implement it!

OLS Estimation in R

# Compute 0OLS estimates
beta <- cov(y, x) / var(x)
alpha <- mean(y) - mean(x) * beta

# Compute BLP estimates
blp_yx <- alpha + x * beta

# Compute standard error for beta

epsilon <- y - blp_yx

se_numer <- sqrt(mean(epsilon”2 * (x - mean(x))"2))
se <- (se_numer / var(w)) / sqrt(n)

/(
G

Note: There exists an OLS implementation in R — the 1lm-command. But importantly:
Base-R does not implement the standard error of Theorem 3! So have some faith in
your abilities and implement OLS yourself. See Problem 7 of Problem Set 3.
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The California STAR Data

The California Standardized Testing and Reporting (STAR) data:
> All 420 K-6 and K-8 districts in California for 1998/99;

> Average reading and math scores on 5th grade standardized test;
> Average school characteristics: E.g., student-teacher ratios, income.
Suppose we are interested in assessing the relationship between students’

math scores and student-teacher ratios. For this purpose, let (Y, W, U)
be random variables, where Y = g(W, U) and

> Y = students’ average math scores in a California district;
> W = the average student-teacher ratio of the district;

> U = all determinants of Y other than W.

We assume that the STAR data is the realization of the sample
iid
(Y1, Wh), ..., (Yazo, Wano) ~ (Y, W).

Note: The data is used as an example in Stock and Watson (2015) and readily
available on their website. You can find the dataset on Canvas: star98.csv.
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The California STAR Data (Contd.)

Figure 1: Histogram of the Student-Teacher Ratios in the STAR Data
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Notes. You can find the code generating the figure on GitHub: example_star98.R.
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https://github.com/thomaswiemann/econ-21020/blob/main/example_star98.R

The California STAR Data (Contd.)

Since the student-teacher ratio is (nearly) continuous, need BLP:

> Conditional expectations can't be estimated directly;

> Choose to focus on best linear approximation instead for feasibility.

In particular, we consider estimating the BLP(Y|W)-coefficient 5.

> [ captures the approximate expected change in students’ math score
associated with an additional student per teacher.

Our OLS estimate and the corresponding standard error are
B~ -1.930 , and se<3n>% .57

Hence, a 95% confidence interval is given by

Ch =~ [’Z?‘TG / —@?Zl}

Notes. You can replicate these estimates with the code on GitHub: example_star98.R.
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https://github.com/thomaswiemann/econ-21020/blob/main/example_star98.R

The California STAR Data (Contd.)

W /o additional assumptions, a correct interpretation of Bn is:

> An additional student per teacher is associated with an approximate
expected change of students’ math score by -1.939 points.

It's important to qualify your interpretation:
> “approximate” to highlight that BLP(Y|W) # E[Y|W];

> "“associated” to emphasize that  is a descriptive parameter.
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The California STAR Data (Contd.)

Suppose that a peer who has not yet taken Econ 21020 sees your
estimate 3, and concludes:

> “Just as | expected. Low student-teacher ratios are causing
disastrous learning outcomes. We should hire more math teachers! "

What's wrong with this interpretation?

> It's is a causal interpretation for a descriptive parameter: Not good!

From Lecture 6A, we know that under random assignment (RA), a causal
interpretation of 3 would be appropriate. What does RA imply here?

> W 1L U, i.e., that the student-teacher ratio is independent of all
other determinants of students’ average math scores.

Do you think random assignment is a plausible assumption here?

> Probably not. E.g., wealthier districts may hire both 1) better
teachers, and 2) more teachers per student.
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The California STAR Data (Contd.)

To convince your peer that RA is likely to be implausible in the context
of the California STAR data, you consider conducting a balance test.

Let the random variable X denote districts’ average parental income.
> RA implies W 1L U= W 1 X;

> Hence, W 1L X = Cov(W,X)=0= gx =0.
Here: Bx is the BLP(X|W)-coefficient.

A balance test may thus consider testing
Ho: Bx =0 wversus Hp: (Bx #0.

Rejecting Hy would provide evidence that W 1 X.

> Potential cause for worry (but of course: Type | errors exist!).

Failure to reject Hy would not provide evidence that W L X.
> May be because of W 1L X or low power of the test!
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The California STAR Data (Contd.)

Our OLS estimate of Sx and the corresponding standard error are

Bxam =057 andse(fxn)~ ©.223

The test statistic for a two-sided hypothesis test is
- 0.9y

9103 )C‘: 597

The corresponding p-value is

p-value ~ Z C{« @ (; ??1)) L O.0000 F#

Hence, on a 5% significance level, we reject H,.
0

T, ~

> On a 5% significance level, there is sufficient evidence to reject that
the approximate expected change in average parental income
associated with a unit-change in the student-teacher ratio is zero.

As a consequence, we may deem RA implausible for the STAR context.
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Summary

Today, we introduced OLS as an estimator for the BLP(Y|X).

> Showed that it is consistent and asymptotically normal;

> Considered the California STAR data as an example.

We're now well-equipped for causal analysis under random assignment:

> Defined interesting causal parameters using the all causes model;
> Showed identification of the ATE;
> Concluded that if W is discrete, may use the binning estimator;

> If W is continuous, can leverage OLS to obtain approximate results.

But as we saw, random assignment is not always plausible or desired:

> Rarely applicable in non-experimental settings;

> Does not allow to study selection into treatment;

Next, we study a new identifying assumption: Selection on Observables.
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