
Simple Linear Regression

Part B: Ordinary Least Squares

Thomas Wiemann
University of Chicago

Econometrics
Econ 21020

Updated: April 27, 2022

 



Summary

In Part A, we introduced BLP(Y |X ) as approximation to E [Y |X ].
Û Showed that the BLP-coe�cients are well-defined when Var(X ) > 0;
Û Discussed interpretation using Yitzhaki’s Theorem;

The BLP and its coe�cients – and — are theoretical concepts.

In Part B, we bridge the gap between BLP and real data using statistics.
Û Develop the ordinary least squares estimator;
Û Analyze its statistical properties under an iid sample;
Û Apply it to study the California STAR data.
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Ordinary Least Squares

Let Y and X be two random variables. Throughout, we consider a
random sample (Y1, X1), . . . , (Yn, Xn) iid≥ (Y , X ).

From Lecture 6A, we know that the BLP-coe�cients are given by

— = Cov(Y , X )
Var(X ) , and – = E [Y ] ≠ E [X ]—, (1)

whenever Var(X ) > 0.

This suggests sample analogue estimators

—̂n = (2)

and

–̂n = (3)
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Ordinary Least Squares (Contd.)

The estimators (–̂n, —̂n) are known as ordinary least squares (OLS)
estimators. This is because they can also be motivated as solutions to
the least-squares sample criterion:

(–̂n, —̂n) = arg min
–,—œ

1
n

nÿ

i=1
(Yi ≠ (– + Xi—))2 , (4)

whenever 1
n

qn

i=1 X 2
i

≠
! 1

n

qn

i=1 Xi

"2
> 0. In particular, we have:
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Ordinary Least Squares (Contd.)

For our analysis, it’s useful to rewrite —̂n using Ái © Yi ≠ BLP(Yi |Xi):

—̂n =

(5)

Wiemann Ordinary Least Squares 7 / 30



Outline

1. Ordinary Least Squares

2. Estimator Properties

Û Bias

Û Consistency
Û Asymptotic Distribution

3. Case Study: The California STAR Data

Wiemann Ordinary Least Squares 8 / 30



Bias

Our analysis of the OLS estimator begins with its bias.

We assume here that X is continuous to avoid division by zero with
positive probability (for n Ø 2).

Û Flashbacks? Recall Problem 4d) of Problem Set 2 and the additional
complications non-continuous X would introduce.

The bias of —̂n when X is continuous is given by

Bias(—̂n) = E [—̂n] ≠ — =

(6)
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Bias

Hence, for continuous X , if E [Ái |Xi ] = 0, then Bias(—̂n) = 0.
Û Does E [Ái |Xi ] = 0 hold generally? No: E [ÁiXi ] = 0 ”∆ E [Ái |Xi ] = 0.
Û When do we know that E [Ái |Xi ] = 0? When E [Y |X ] is linear.
Û When do we know that E [Y |X ] is linear? When X is binary.
Û Binary X is not continuous, so need to worry about division by zero...

Many textbooks state that the OLS estimator —̂n is unbiased for —.
Û Importantly: Strong assumption are made along the way!
Û We showed Bias(—̂n) = 0 if E [Y |X ] linear and X is continuous.
Û With binary X , showed conditional unbiasedness in Problem Set 2.

Generally, little reason to believe Bias(—̂n) = 0 in economic applications:
Û Economic theory rarely implies linear E [Y |X ] with continuous X .
Û Horrible news? No: Most estimators are biased in practice...
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Consistency

Theorem 1 ensures OLS satisfies the minimum requirement: Consistency.

Theorem 1

Let Y and X be random variables such that Var(X ) > 0, and let (–, —)
denote the BLP(Y |X )-coe�cients. If (–̂n, —̂n) are the OLS estimators
constructed using (Y1, X1), . . . , (Yn, Xn) iid≥ (Y , X ), then

5
–̂n

—̂n

6
pæ

5
–
—

6
(7)

Since the OLS estimators are continuous functions of moments of
(Y , X ), we can prove this straightforwardly:

Û Show —̂n

pæ — using WLLN + CMT;

Û Show –̂n

pæ – using WLLN + CMT;
Û Then use that marginal convergence in probability implies joint

convergence in probability.
Wiemann Ordinary Least Squares 12 / 30



Consistency (Contd.)

Proof.
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Asymptotic Distribution

OLS is asymptotically normal, which is useful for approximating its
sampling variance in practice. Theorem 2 focuses on —̂n for conciseness.

Theorem 2

Let Y and X be random variables such that Var(X ) > 0, and let (–, —)
denote the BLP(Y |X )-coe�cients. If —̂n is OLS estimator for —

constructed using (Y1, X1), . . . , (Yn, Xn) iid≥ (Y , X ), then

Ô
n

1
—̂n ≠ —

2
dæ N

A
0,

E
#
Á2 (X ≠ E [X ])2 $

Var(X )2

B
, (8)

where Á © Y ≠ BLP(Y |X ).

Note: Classical treatments of OLS would refer to the variance expression in Theorem

2 as the asymptotic variance under heteroskedasticity. By this, they mean the general

case that Var(‘|X) is allowed to vary with X. As Á is simply the BLP-residual, there is

no obvious reason to think otherwise. We thus don’t highlight this as a special case.
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Asymptotic Distribution (Contd.)

Proof.
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Asymptotic Distribution (Contd.)
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Standard Error

Theorem 2 is of no practical use unless we can replace the expression for
the asymptotic variance by a consistent estimator. Fortunately, we can.

Theorem 3

Let Y and X be random variables such that Var(X ) > 0, and let (–, —)
denote the BLP(Y |X )-coe�cients. If —̂n is OLS estimator for —

constructed using (Y1, X1), . . . , (Yn, Xn) iid≥ (Y , X ), then
1

—̂n ≠ —
2

se(—̂n)
dæ N (0, 1) , (9)

where

se(—̂n) =

Ò
1
n

qn

i=1 Á̂2
i

!
Xi ≠ 1

n

qn

i=1 Xi

"2

Ô
n

1
1
n

qn

i=1 X 2
i

≠
! 1

n

qn

i=1 Xi

"2
2 , (10)

and Á̂i = Yi ≠ Xi —̂n.
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Standard Error (Contd.)

We prove Theorem 3 for X such that E [X ] = 0. The more general result
holds, of course, but its proof requires even more painful algebra.

Proof.
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OLS Estimation in R

This completes the theoretical analysis: Now we need to implement it!

OLS Estimation in R⌥
# Compute OLS estimates

beta <- cov(y, x) / var(x)

alpha <- mean(y) - mean(x) * beta

# Compute BLP estimates

blp_yx <- alpha + x * beta

# Compute standard error for beta

epsilon <- y - blp_yx

se_numer <- sqrt(mean( epsilon ˆ2 * (x - mean(x ))ˆ2))

se <- (se_numer / var(w)) / sqrt(n)⌦⌃ ⇧
Note: There exists an OLS implementation in R – the lm-command. But importantly:

Base-R does not implement the standard error of Theorem 3! So have some faith in

your abilities and implement OLS yourself. See Problem 7 of Problem Set 3.
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The California STAR Data

The California Standardized Testing and Reporting (STAR) data:
Û All 420 K-6 and K-8 districts in California for 1998/99;
Û Average reading and math scores on 5th grade standardized test;
Û Average school characteristics: E.g., student-teacher ratios, income.

Suppose we are interested in assessing the relationship between students’
math scores and student-teacher ratios. For this purpose, let (Y , W , U)
be random variables, where Y = g(W , U) and

Û Y © students’ average math scores in a California district;
Û W © the average student-teacher ratio of the district;
Û U © all determinants of Y other than W .

We assume that the STAR data is the realization of the sample
(Y1, W1), . . . , (Y420, W420) iid≥ (Y , W ).

Note: The data is used as an example in Stock and Watson (2015) and readily

available on their website. You can find the dataset on Canvas: star98.csv.
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The California STAR Data (Contd.)

Figure 1: Histogram of the Student-Teacher Ratios in the STAR Data
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Notes. You can find the code generating the figure on GitHub: example star98.R.
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The California STAR Data (Contd.)

Since the student-teacher ratio is (nearly) continuous, need BLP:
Û Conditional expectations can’t be estimated directly;
Û Choose to focus on best linear approximation instead for feasibility.

In particular, we consider estimating the BLP(Y |W )-coe�cient —.
Û — captures the approximate expected change in students’ math score

associated with an additional student per teacher.

Our OLS estimate and the corresponding standard error are

—̂n ¥ , and se
1

—̂n

2
¥

Hence, a 95% confidence interval is given by

cn ¥

Notes. You can replicate these estimates with the code on GitHub: example star98.R.
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The California STAR Data (Contd.)

W/o additional assumptions, a correct interpretation of —̂n is:
Û An additional student per teacher is associated with an approximate

expected change of students’ math score by -1.939 points.

It’s important to qualify your interpretation:
Û “approximate” to highlight that BLP(Y |W ) ”= E [Y |W ];
Û “associated” to emphasize that — is a descriptive parameter.
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The California STAR Data (Contd.)

Suppose that a peer who has not yet taken Econ 21020 sees your
estimate —̂n and concludes:

Û “Just as I expected. Low student-teacher ratios are causing
disastrous learning outcomes. We should hire more math teachers! ”

What’s wrong with this interpretation?
Û It’s is a causal interpretation for a descriptive parameter: Not good!

From Lecture 6A, we know that under random assignment (RA), a causal
interpretation of — would be appropriate. What does RA imply here?

Û W ‹‹ U, i.e., that the student-teacher ratio is independent of all
other determinants of students’ average math scores.

Do you think random assignment is a plausible assumption here?
Û Probably not. E.g., wealthier districts may hire both 1) better

teachers, and 2) more teachers per student.
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The California STAR Data (Contd.)

To convince your peer that RA is likely to be implausible in the context
of the California STAR data, you consider conducting a balance test.

Let the random variable X denote districts’ average parental income.
Û RA implies W ‹‹ U ∆ W ‹‹ X ;
Û Hence, W ‹‹ X ∆ Cov(W , X ) = 0 ∆ —X = 0.

Here: —X is the BLP(X |W )-coe�cient.

A balance test may thus consider testing

H0 : —X = 0 versus H1 : —X ”= 0.

Rejecting H0 would provide evidence that W ”‹‹ X .
Û Potential cause for worry (but of course: Type I errors exist!).

Failure to reject H0 would not provide evidence that W ‹‹ X .
Û May be because of W ‹‹ X or low power of the test!
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The California STAR Data (Contd.)

Our OLS estimate of —X and the corresponding standard error are

—̂X ,n ¥ , and se
1

—̂X ,n

2
¥

The test statistic for a two-sided hypothesis test is

Tn ¥

The corresponding p-value is

p-value ¥

Hence, on a 5% significance level, we reject H0.
Û On a 5% significance level, there is su�cient evidence to reject that

the approximate expected change in average parental income
associated with a unit-change in the student-teacher ratio is zero.

As a consequence, we may deem RA implausible for the STAR context.
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Summary

Today, we introduced OLS as an estimator for the BLP(Y |X ).
Û Showed that it is consistent and asymptotically normal;
Û Considered the California STAR data as an example.

We’re now well-equipped for causal analysis under random assignment:
Û Defined interesting causal parameters using the all causes model;
Û Showed identification of the ATE;
Û Concluded that if W is discrete, may use the binning estimator;
Û If W is continuous, can leverage OLS to obtain approximate results.

But as we saw, random assignment is not always plausible or desired:
Û Rarely applicable in non-experimental settings;
Û Does not allow to study selection into treatment;

Next, we study a new identifying assumption: Selection on Observables.
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