
Multiple Linear Regression

Part A: The Best Linear Predictor

Thomas Wiemann
University of Chicago

Econometrics
Econ 21020

Updated: May 16, 2022

 



Introduction

In lecture 7, we discussed the Selection on Observables (SO) assumption:
Û Showed that E [Y |W = w , X = x ] = E [g(w , U)|X = x ] under SO;
Û Derived binning estimator for CATE and ATE for discrete (W , X ).

But binning estimators are not versatile:
Û For continuous/mixed (W , X ), binning estimators are not applicable;
Û Even for discrete (W , X ), may run into the small bin problem.

Need an alternative estimator for the CEF E [Y |W = w , X = x ].

The alternative estimator we consider is multiple linear regression.
Û Generalization of simple linear regression discussed in Lecture 6.
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Introduction (Contd.)

Multiple linear regression has the same pros & cons discussed before:
Û Easy to compute but di�cult to interpret...
Û Linear regression does not estimate the CEF directly!
Û Linear regression estimates the best linear approximation of the CEF.

We again take two key steps:
A. Define, analyze and discuss the best linear approximation of the CEF.
B. Derive and characterize the linear regression estimator.

In contrast to Lecture 6, this time we focus on random vectors.
Û Key results will be familiar, but proofs will be di�erent.

Notation: Throughout, vectors are always column vectors. Column vectors can be
transformed to row vectors using the transpose-operator. In particular, x œ p , p œ
is a column vector and x€ is a row vector.
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Best Linear Predictor

The best linear approximation to the CEF w.r.t. the L
2-loss is referred to

as the best linear predictor.
Û See Problem 5 of Problem Set 4 why this terminology is sensible.

Definition 1 (Best Linear Predictor; BLP)

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector. The best linear predictor (BLP) of the conditional expectation
E [Y |X ] is defined as

BLP(Y |X ) = X
€— = —0 + X1—1 + . . . + Xk—k , (1)

where the BLP-coe�cients — = (—0, —1, . . . , —k) are such that

— œ arg min
—œ k+1

E

Ë!
E [Y |X ] ≠ X

€—
"2È

. (2)

As before, the BLP is an approximation to the CEF:
Û BLP(Y |X = x) ”= E [Y |X = x ] except in very special cases!
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BLP-Coe�cients

BLP-coe�cients are known functions of moments of (Y , X ):

Theorem 1

Let Y be a random variable and X = (1, X1, . . . , Xk)€
be a random

vector. If E [XX
€]≠1

exists, then

— œ arg min
—œ k+1

E

Ë!
E [Y |X ] ≠ X

€—
"2È

… — = E [XX
€]≠1

E [XY ].
(3)

Theorem 1 is hugely convenient:
Û Well equipped for analyzing moments of (Y , X );
Û Immediately suggest sample analogue estimator (patience, for now).
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Vector Di�erentiation Recap

As the objective in (2) is convex in —, FOCs are su�cient and necessary.
Û Di�erentiate with respect to —, set to 0, then solve for —.

The di�culty: — œ k+1 is a vector!
Û Need vector di�erentiation rules (prerequisites?).

We only require the following rules, stated here without proof:

Lemma 1

Consider x œ p, A œ s,p, B œ p,p for p, s œ . Then

ˆ

ˆx
Ax = A,

ˆ

ˆx€ x
€

A
€ = A,

ˆ

ˆx
x

€
Bx = x

€(B€ + B).
(4)

We’re now equipped for the proof of Theorem 1.
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Proof of Theorem 1

Proof.
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Linear Conditional Expectation Functions

The next result gives the special case when the BLP is the CEF.

Corollary 1

Let Y be a random variable and X = (1, X1, . . . , Xk)€
be a random

vector such that E
#
XX

€$≠1
exists. If E [Y |X ] is linear, that is,

÷—̃ œ k+1 : E [Y |X ] = X
€—̃, (5)

then,

E [Y |X ] = BLP(Y |X ). (6)

Proof.
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Linear Conditional Expectation Functions (Contd.)

As before, one should not generally believe that E [Y |X ] is linear.
Û Economic theory rarely motivates severe functional form restrictions.

Important exception: When X is discrete, then E [Y |X ] is linear in the set
of indicators { x (X )}xœsupp X w/o further restrictions:

E [Y |X ] =

Note: Note that E [Y |X ] is not guaranteed to be linear in X even if X is discrete! It’s
important to transform X using indicators: X =

q
xœsupp X x (X)x.
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BLP-Residual

The BLP-residual is the error when predicting Y using BLP(Y |X ).
Û Convenient object in the analysis of the BLP.

Definition 2 (BLP-Residual)

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector. The BLP-residual Á is defined as

Á = Y ≠ BLP(Y |X ). (7)
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Properties of the BLP-Residual

The BLP-residual is mean-zero and uncorrelated to X .
Û Importantly: This is not an assumption!

Lemma 2

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector. If Á = Y ≠ BLP(Y |X ), then

E [Á] = 0, and E [ÁX ] = 0. (8)

Proof.
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Properties of the BLP-Residual (Contd.)

In general, the BLP-residual is not mean-independent of X .

In particular, if Y is a random variable, X = (1, X1, . . . , Xk)€ is a
random vector, and Á = Y ≠ BLP(Y |X ), then typically

E [Á|X ] ”= 0, (9)

except in very special cases (e.g., when the CEF is linear).
Û See Problem 1e) of Problem Set 4.
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Interpretation of the BLP-Coe�cient —

Note that BLP(Y |X ) is a feature of the joint distribution of (Y , X ) :
Û Purely descriptive;
Û Captures the approximate expected level of Y associated with a

level of X .

Practitioners often calculate the di�erence in BLPs:

BLP(Y |X = x
Õ) ≠ BLP(Y |X = x) = (10)

Note that x and x
Õ are vectors. Interpretation:

Û — captures the approximate expected change in Y associated with a
change from X = x to X = x

Õ.

Terminology is very important to avoid confusion:
Û Need “approximate” to highlight that BLP(Y |X ) ”= E [Y |X ];
Û Need “associated” to emphasize purely descriptive interpretation.
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Solving for Subvectors of —

We’re often interested in only a subvector of the BLP-coe�cient —.
Û Often: The component of — corresponding to the policy variable.
Û Ceteris paribus-principle.

Consider Y and (X€, W ) = (1, X1, . . . , Xk≠1, W ).
Û X is a random vector but W is a random variable.

Let — = (—0, —1, . . . , —k≠1, —W )€ = (—€
X , —W )€ be the

BLP(Y |X , W )-coe�cient.

Suppose we’re only interested in —W .

Û E.g., because W is the policy variable of interest;

How do we interpret —W ?
Û —W just the kth component of —...
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Solving for Subvectors of — (Contd.)

Frisch and Waugh (1933) motivate an alternative interpretation of —W .

Define
Û Ỹ © Y ≠ BLP(Y |X );
Û W̃ © W ≠ BLP(W |X ).

Then the Frisch-Waugh Theorem shows

—W = Cov(W̃ , Ỹ )
Var(W̃ )

,

whenever Var(W̃ ) > 0.

Interpretation:
Û —W is the coe�cient of W controlling for X = (1, X1, . . . , Xk≠1)€;
Û But be very careful: Controlling is not conditioning !
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BLP with De-Meaned Variables

We first consider simply de-meaning the variables under consideration.

Lemma 3

Let Y be a random variable and X = (1, X1, . . . , Xk)€ = (1, X
€
1:k)€ be a

random vector. Let Ȳ © Y ≠ E [Y ] and X̄ © X1:k ≠ E [X1:k ]. If
— = (—0, —1, . . . , —k)€ are BLP(Y |X )-coe�cients, then
—1:k = (—1, . . . , —k) are BLP

!
Ȳ |X̄

"
-coe�cients.

Proof.
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The Frisch–Waugh Theorem

Theorem 2 states a version of the result due to Frisch and Waugh (1933).
Û Arguably one of the most important theorems in econometrics.

Theorem 2 (Frisch–Waugh Theorem)

Let Y be a random variable and (X€, W ) = (1, X1, . . . , Xk≠1, W ) be a

random vector. Let Ỹ © Y ≠ BLP(Y |X ) and W̃ © W ≠ BLP(W |X ). If

Var(W̃ ) > 0 and — = (—0, —1, . . . , —k≠1, —W )€ = (—€
X , —W )€

are

BLP(Y |X , W )-coe�cients, then

—W = Cov(W̃ , Ỹ )
Var(W̃ )

. (11)

Importantly: The Frisch–Waugh Theorem is a purely descriptive result!
Û As before, the coe�cient —W is a purely descriptive parameter;
Û Do not get fooled by fancy maths...
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The Frisch–Waugh Theorem (Contd.)

Proof.
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Interpretation of the BLP-Coe�cient — (Contd.)

If E [Y |X , W ] is linear in both X and W , then

ˆ

ˆw
E [Y |X , W = w ] (1)= ˆ

ˆx
BLP(Y |X , W = w) = —W , (12)

where (1) follows from Corollary 1.
Û Under linearity, —W is the CEF derivative w.r.t. W .

The interpretation is appealing but is appropriate only in special cases.

Would like derivative-interpretation for —W w/o functional assumptions...
Û ... but we don’t have one!
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Generalized Yitzhaki’s Theorem

Angrist and Krueger (1999) generalize Yitzhaki’s Theorem (Lecture 6A):
Û Don’t restrict E [Y |X , W ] but assume E [W |X ] is linear.

Theorem 3 (Generalized Yitzhaki’s Theorem)

Let Y and W be random variables and X be a random vector. Let — be

the BLP(Y |X , W )-coe�cient where —W is the coe�cient corresponding

to W . If E [Var(W |X )] > 0 and E [W |X ] is linear, then

—W = E

5⁄ Œ

≠Œ

3
ˆ

ˆt
E [Y |W = t, X ]

4
Ê(t, X )dt

6
, (13)

where

Ê(t, X ) = (E [W |W Ø t, X ] ≠ E [W |W < t, X ]) P(W Ø t|X )P(W < t|X )
E [Var(W |X )]

Note: Angrist and Krueger (1999) only provide formulas for a discrete variable of
interest. Theorem 3 is a slight generalization of their result.
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Generalized Yitzhaki’s Theorem (Contd.)

Proof.
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Generalized Yitzhaki’s Theorem (Contd.)
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Generalized Yitzhaki’s Theorem (Contd.)

The generalized Yitzhaki weights are such that:
Û ’x œ supp X , the weights Ê(t, x) are s.t. Ê(t, x) Ø 0, ’t, ands Œ

≠Œ Ê(t, x)dt = 1.

Û ’x œ supp X , maximum weight reached at t = E [W |X = x ] (if
density exists at E [W |X = x ]).

Similar to Yitzhaki’s weights but now also w/ expectations w.r.t. X !
Û Allows for precise interpretation as weighted average CEF derivative;
Û But precise interpretation even more di�cult w/ inclusion of X !

Are practitioners thinking of Theorem 3 when interpreting —W ?
Û Recall: When linearity of E [W |X ] is not assumed, we don’t even

have a weighted-average derivative interpretation of —W !
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Causal Interpretation under Random Assignment

Consider the all causes model discussed in previous lectures:

Y = g(W , U). (14)

The conditional average structural function (casf) is

g1(w , X ) © EU [g(w , U)|X ], (15)

Conditional e�ects of marginal changes in the policy variable:

g
Õ
1(w , X ) © ˆ

ˆw
g1(w , X ). (16)

Practitioners are often content with a summary of g
Õ
1(w , X ):

g
Õ
1 © EW ,X [g Õ

1(W , X )] . (17)

Û g
Õ
1 is the expected change in Y caused by a marginal change in W .
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Causal Interpretation under Random Assignment (Contd.)

g
Õ
1 is a function (of the distribution) of U and is thus not identified.
Û Need identifying assumption!

In lecture 7, we saw that under Assumption SO and CS, we have

E [g(w , U)|X ] = E [Y |W = w , X ]. (18)

Then simply

g
Õ
1(w , X ) = ˆ

ˆw
E [Y |W = w , X ]. (19)

Under the conditions of Theorem 3, SO and CS, we then have

—W = E

5⁄ Œ

≠Œ
g

Õ
1(t, X )Ê(t, X )dt

6
. (20)

Û Under linearity of E [W |X ], SO, and CS, may interpret — as
weighted average of the asf-derivative;

Û But —W is generally distinct from average asf-derivative g
Õ
1.
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Causal Interpretation under Random Assignment (Contd.)

The Yitzhaki interpretation for —W in Equation (20) is often challenging.
We thus also discuss a weaker alternative.

BLP(Y |W = w , X = x) is an approx./ to E [Y |W = w , X = x ].
Û Under SO and CS, E [Y |W = w , X = x ] = E [g(w , U)|X = x ].
Û Hence, BLP(Y |W = w , X = x) is an approx./ to E [g(w , U)|X = x ]

whenever SO and CS are assumed.

SO and CS thus motivate an approximate causal interpretation of —W :
Û Under SO and CS, —W captures the approximate expected change in

Y caused by a unit-change in W .
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Summary

Today, we generalized the BLP(Y |X ) for vector-valued X .
Û Showed the BLP-coe�cients are well-defined when E [XX

€]≠1 exists;
Û Hopeful that this is a useful alternative to the direct analysis of

E [Y |X = x ] when P(X = x) is small.

But there is no free lunch...
Û Approximation of E [Y |X ] makes interpretation of BLP(Y |X )-

coe�cients — challenging;
Û Used Frisch-Waugh Theorem for analysis of sub-vector —W ;
Û Used Theorem 3 to motivate a weighted-average derivative

interpretation of —W when E [W |X ] is linear;
Û Discussed interpretation of —W under SO and CS.

In Part B, we turn to estimating the BLP-coe�cients:
Û Introduce the ordinary least squares estimator for —;
Û Analyze its statistical properties.
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