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Summary

In Part A, we introduced BLP(Y |X ) as approximation to E [Y |X ].
Û BLP-coe�cients are well-defined when E

#
XX€$≠1 exists;

Û Used the Frisch-Waugh Theorem for subvector analysis;
Û Discussed interpretation using a generalized Yitzhaki’s Theorem;

The BLP and its coe�cients — are theoretical concepts.

In Part B, we bridge the gap between BLP and real data using statistics.
Û Develop the ordinary least squares estimator;
Û Analyze its statistical properties under an iid sample;
Û Propose Yitzhaki-based balance test for selection on observables;
Û Use matrix calculus for implementation.
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Ordinary Least Squares

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector. Consider a random sample (Y 1, X 1), . . . , (Y n, X n) iid≥ (Y , X ).

From Lecture 8A, we know that the BLP-coe�cients are given by

— = E [XX€]≠1E [XY ], (1)

whenever E [XX€]≠1 exists.

This suggests the sample analogue estimator

—̂n = (2)

Notation: Superscripts – i.e., X1, . . . Xn – are used as sample indices throughout.
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Ordinary Least Squares (Contd.)

The estimator —̂n is known as ordinary least squares (OLS). This is
because it can also be motivated as solutions to the least-squares sample
criterion:

—̂n = arg min
—œ k+1

1
n

nÿ

i=1

!
Y i ≠ X i€—

"2

, (3)

whenever E [
qn

i=1
X iX i€]≠1 exists. In particular, we have:

Wiemann Ordinary Least Squares 6 / 31



Ordinary Least Squares (Contd.)

For our analysis, it’s useful to rewrite —̂n using Ái © Y i ≠ BLP(Y i |X i):

—̂n =

(4)
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Bias

Our analysis of the OLS estimator begins with its bias.

We assume here that X is continuous to ensure existence of
E [

qn

i=1
X iX i€]≠1 (for n > k + 1) when E [XX€]≠1 exists.

The bias of —̂n when X is continuous and E [XX€]≠1 exists is given by

Bias(—̂n) = E [—̂n] ≠ — =

(5)
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Bias

Hence, if E [Ái |X i ] = 0, then Bias(—̂n) = 0.
Û Does E [Ái |X i ] = 0 hold generally? No: E [ÁiX i ] = 0 ”∆ E [Ái |X i ] = 0.
Û When do we know that E [Ái |X i ] = 0? Special case: Linear E [Y |X ].

Many textbooks state that the OLS estimator —̂n is unbiased for —.
Û Importantly: Strong assumption are made along the way!
Û We only showed Bias(—̂n) = 0 if E [Y |X ] linear and X is continuous.

Generally, little reason to believe Bias(—̂n) = 0 in economic applications:
Û Economic theory rarely implies linear E [Y |X ] with continuous X .
Û Horrible news? No: Most estimators are biased in practice...
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Consistency

Theorem 1 ensures OLS satisfies the minimum requirement: Consistency.

Theorem 1

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector such that E [XX€]≠1 exists, and let — denote the
BLP(Y |X )-coe�cient. If —̂n are the OLS estimators constructed using
(Y 1, X 1), . . . , (Y n, X n) iid≥ (Y , X ), then

—̂n

pæ —. (6)

Since the OLS estimators are continuous functions of moments of
(Y , X ), we can prove this straightforwardly using the WLLN and CMT.
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Consistency (Contd.)

Proof.
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Asymptotic Distribution

Theorem 2 shows that OLS is asymptotically normal.

Theorem 2

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector such that E [XX€]≠1 exists, and let — denote the
BLP(Y |X )-coe�cient. If —̂n are the OLS estimators constructed using
(Y 1, X 1), . . . , (Y n, X n) iid≥ (Y , X ), then

Ô
n

1
—̂n ≠ —

2
dæ N (0, �) , (7)

where

� = E
#
XX€$≠1 E

#
XX€Á2

$
E

#
XX€$≠1

, (8)

with Á © Y ≠ BLP(Y |X ).
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Asymptotic Distribution (Contd.)

Proof.
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OLS Covariance Estimation

Theorem 2 is of no practical use unless we can replace the expression for
the asymptotic variance by a consistent estimator. Fortunately, we can.

Theorem 3

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector such that E [XX€]≠1 exists, and let — denote the
BLP(Y |X )-coe�cient. If —̂n is the OLS estimator constructed using
(Y 1, X 1), . . . , (Y n, X n) iid≥ (Y , X ), then

Ô
n‚�≠ 1

2

n

1
—̂n ≠ —

2
dæ N (0, Ik+1) , (9)

where

‚�n =
A

1
n

nÿ

i=1

X iX i€

B≠1 A
1
n

nÿ

i=1

X iX i€Á̂i 2

B A
1
n

nÿ

i=1

X iX i€

B≠1

(10)

and Á̂i = Y i ≠ X i€—̂n.
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OLS Covariance Estimation (Contd.)

Proof.
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OLS Covariance Estimation (Contd.)

Theorem 2 and 3 give inference for the vector —̂n.
Û Often interested only in a subvector;
Û E.g., the estimator —̂jn of —j .

Corollary 1 and 2 give inference for individual components of —̂n.

Û Corollary 1 combines Theorem 2 + Slutsky’s Theorem;
Û Corollary 3 gives the standard error formula.
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Subvector Asymptotic Distribution

Corollary 1

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector such that E [XX€]≠1 exists, and let — = (—0, —1, . . . , —k) denote
the BLP(Y |X )-coe�cient. If —̂n = (—̂0n, —̂1n, . . . , —̂kn) is the OLS
estimator constructed using (Y 1, X 1), . . . , (Y n, X n) iid≥ (Y , X ), then

Ô
n

1
—̂jn ≠ —j

2
dæ N

!
0, e€

j �ej

"
, ’j = 0, 1, . . . , k, (11)

where � is defined by Equation (8) and ej is the jth unit vector.

Proof.

Note: e€
j

�ej simply selects the jth diagonal entry of �
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Standard Error

Corollary 2

Let Y be a random variable and X = (1, X1, . . . , Xk)€ be a random
vector such that E [XX€]≠1 exists, and let — = (—0, —1, . . . , —k) denote
the BLP(Y |X )-coe�cient. If —̂n = (—̂0n, —̂1n, . . . , —̂kn) is the OLS
estimator constructed using (Y 1, X 1), . . . , (Y n, X n) iid≥ (Y , X ), then

—̂jn ≠ —j

se
1

—̂jn

2 dæ N (0, 1) , ’j = 0, 1, . . . , k, (12)

where

se
1

—̂jn

2
= 1Ô

n

Ò
e€

j
‚�nej (13)

with ‚�n is defined by Equation (3) and ej is the jth unit vector.

Note: e€
j

‚�nej simply selects the jth diagonal entry of ‚�n
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Standard Error (Contd.)

Proof.
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Evaluating Selection on Observables w/ OLS

Recall the all causes model

Y = g(W , U), (14)

where the selection on observables (SO) assumption is expressed as

W ‹‹ U|X . (15)

Û Lecture 7: ATE is identified under SO and common support.

SO is a weaker assumption than random assignment, but it remains
strong: Conditional on X , W is randomly assigned.

Û Need to convince others that SO is plausible.

Can’t verify SO because it is a restriction on (Y , W , X , U)...
Û ... but can potentially check implications.
Û Typically: Balance test.
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Evaluating Selection on Observables w/ OLS (Contd.)

Unfortunately, the balance test from Lecture 7 is not applicable w/
non-discrete (W , X ).

Û Binning estimators cannot be computed;
Û Use OLS instead.

Suppose, that U = (X̃ , Ũ), where X̃ ”= X is observed.

The Generalized Yitzhaki Theorem is used to derive a balance test:
Û By SO, W ‹‹ U|X ∆ W ‹‹ X̃ |X ;
Û Then,

W ‹‹ X̃ |X ∆ E [X̃ |W , X ] = E [X̃ |X ] ∆ ˆ

ˆw E [X̃ |W = w , X ] = 0;

Û Then, if E [W |X ] is linear, the Generalized Yitzhaki Theorem implies
—̃W = 0, where —̃W is the BLP(X̃ |W , X )-coe�cient corresponding
to W .

Hence, if E [W |X ] is linear, then W ‹‹ U|X ∆ —̃W = 0.
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Evaluating Selection on Observables w/ OLS (Contd.)

If E [W |X ] is linear, we can conduct a balance test via

H0 : —̃W = 0 versus H1 : —̃W ”= 0,

where —̃W is the BLP(X̃ |W , X )-coe�cient corresponding to W .

The test statistic is simply

Tn =
ˆ̃—Wn

se
1 ˆ̃—Wn

2 , (16)

where Tn

dæ N(0, 1) under H0 by Corollary 2.

Rejecting H0 would provide evidence that W ”‹‹ X̃ |X .
Û Potential cause for worry (but of course: Type I errors exist!).

Failure to reject H0 would not provide evidence that W ”‹‹ X̃ |X .
Û May be because of W ”‹‹ X̃ |X or low power of the test!
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OLS Implementation

Implementing OLS by brute force (e.g .,
qn

i=1
X iX i€) is di�cult.

Û Instead: Use matrix operations for straightforward computation.

Define the stacked sample matrices Xn and Yn:

Xn ©

S

WWWU

X 1€

X 2€

...
X n€

T

XXXV
, Yn ©

S

WWWU

Y 1

Y 2

...
Y n

T

XXXV
. (17)

Then, matrix calculus shows that we have

X€
n Xn =

nÿ

i=1

X iX i€, X€
n Yn =

nÿ

i=1

X iY i . (18)

The OLS estimator can then equivalently be stated as

—̂n =
!
X€

n Xn

"≠1 !
X€

n Yn

"
. (19)
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OLS Implementation (Contd.)

For the OLS covariance estimator ‚�n, we define stacked residual vector:

‘n © Yn ≠ Xn—̂n =

S

WWWU

Y 1

Y 2

...
Y n

T

XXXV
≠

S

WWWU

X 1€—̂n

X 2€—̂n

...
X n€—̂n

T

XXXV
=

S

WWWU

Á̂1

Á̂2

...
Á̂n

T

XXXV
. (20)

By the same matrix calculus as before, we have

(Xn § ‘n)€ (Xn § ‘n) =
nÿ

i=1

X iX i€Á̂i 2, (21)

where § denotes element-wise multiplication (Hadamard product). Then

‚�n = 1
n

!
X€

n Xn

"≠1
Ë
(Xn § ‘n)€ (Xn § ‘n)

È !
X€

n Xn

"≠1

. (22)

Notation: Strictly speaking, § is defined only for matrices of equal dimension. We

abuse the notation here to denote multiplication between each row of the matrix Xn

with the corresponding component of the vector ‘n.
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OLS Estimation in R

OLS Estimation in R⌥
# Compute OLS estimates

XX_inv <- solve(t(X) %*% X)

XY <- t(X) %*% Y

beta <- XX_inv %*% XY

# Compute BLP estimates

blp_yx <- X %*% beta

# Compute standard error for beta

epsilon <- c(Y - blp_yx)

XX_eps2 <- t(X * epsilon ) %*% (X * epsilon )

Sigma <- XX_inv %*% XX_eps2 %*% XX_inv

se <- sqrt(diag(Sigma ))⌦⌃ ⇧
Note: There exists an OLS implementation in R – the lm-command. But importantly:

Base-R does not implement the standard error of Corollary 2! So have some faith in

your abilities and implement OLS yourself. See Problem 7 of Problem Set 4.
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Summary

Today, we introduced OLS as an estimator for the BLP(Y |X ).
Û Showed that it is consistent and asymptotically normal;
Û Derived standard errors for subvector inference;
Û Proposed Yitzhaki-based balance test for selection on observables.

We’re now well-equipped for causal analysis under selection on
observables & common support:

Û Defined interesting causal parameters using the all causes model;
Û Showed identification of the CATE, ATT, ATU, and ATE;
Û Concluded that if (W , X ) is discrete, may use the binning estimator;
Û If (W , X ) is continuous/mixed, we can leverage OLS to obtain

approximate results.
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