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Recap (Contd.)

We’ve seen last week that seemingly non-linear problems can be
characterized as a linear problem. For instance, piece-wise linear convex
(or concave) functions are permissible.

For example, consider the piecewise linear objective function
f (x) = mini gi(x) where

gi(x) =

Y
_]

_[

5 ≠ x , if i = 1,

2 ≠ 0.2x , if i = 2,

≠9 + x , if i = 3.

Notice that for a given x , f (x) is equivalent to the minimum scalar z
such that z Ø gi(x), ’i . We can thus introduce an additional variable z
and bound the objective function z Ø gi(x), ’i as an additional set of
constraints.

Nested problems like minxØ0
!
mini{di + c€

i x}
"

s.t. Ax Ø b can therefore
be restated as linear problems.
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Recap (Contd.)

We’ve also seen last week how general linear programs can be converted
into standard form.

For example,

min
x

c Õx min
x̃

c̃ Õx̃

s.t. Ax = b, © s.t. Ãx̃ = b̃,

Dx Ø e, x̃ Ø 0n.

x œ n,

where we have defined

Ã :=
5

A ≠A 0
D ≠D ≠I

6
, b̃ :=

5
b
e

6
, x̃ :=

S

U
x+
x≠
s

T

V , and c̃ :=

S

U
c

≠c
0

T

V .
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Outline
ú

Why do we care about standard form? Because its optimal solution – if it
exists – takes the form of a basic feasible solution.

Today’s discussion aims to illustrate the notion of basic feasible solutions
using the geometry of linear programming. This is important because the
simplex algorithm and it’s adaptations are based on this key concept.

Key topics of today:
1. Geometry of Linear Programming

a) Polyhedra and convex sets
b) Extreme points, vertices, and basic feasible solutions
c) Existence and optimality of extreme points

2. Brief Review of Duality Theory

3. An Application to Quantile Regression

úThis discussion is built on the TA material of Joshua Shea and Chapter 2 of
Bertsimas and Tsitsiklis (1997).

Wiemann Introduction to Linear Programming 4/22



Geometry of Linear Programming

To streamline the discussion, we’ll need some definitions. All definitions,
theorems, and corollaries are taken from Bertsimas and Tsitsiklis (1997).

Definition 4.1

A set S µ n is convex if

⁄x + (1 ≠ ⁄)y œ S, ’x , y œ S, ⁄ œ [0, 1].

Definition 4.2 (Polyhedron)

A polyhedron is a set that can be described in the form

{x œ n| Ax Ø b},

where A œ m◊n and b œ m.

All polyhedra are convex, and so are their intersections.
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Geometry of Linear Programming (Contd.)

For example, suppose x œ 3, and the constraints are 1€
3 x = 1, x Ø 0.

So constraints define the space in which your solution must lie in. The
idea of the simplex algorithm is to traverse this space in the most
e�cient way possible to find the solution.

Wiemann Introduction to Linear Programming 6/22



Geometry of Linear Programming (Contd.)

Basic feasible solutions are the key concept that allow for e�cient
computation of linear programming solutions.

Definition 4.3 (Basic Feasible Solution)

Consider a polyhedron P defined by linear equality and inequality
constraints, and let xú be an element of n.
(a) The vector xú is a basic solution if:

(i) All equality constraints are active;
(ii) Out of the constraints that are active at xú, there are n of them

that are linearly independent.
(b) If xú is a basic solution that satisfies all of the constraints, we say

that it is a basic feasible solution.

Note that any linear constraints can be written in matrix form. For
example x Ø 0 ∆ Ix Ø 0. We may thus say “constraints are linearly
independent” if the corresponding rows in the constraint matrix are
linearly independent.
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Geometry of Linear Programming (Contd.)

Henceforth, everything is assumed to be in standard form and assume A
is full row rank Am, m Æ n. Assuming A is full rank is harmless, as it
means there are no redundant constraints (Theorem 2.5 in Bertsimas and
Tsitsiklis (1997)).

Theorem 4.1

Consider the constraints Ax = b and x Ø 0 and assume that the m ◊ n A
has linearly independent rows. A vector x œ n is a basic solution if and
only if we have Ax = b, and there exist indices B(1), . . . , B(m) such that:
(a) The columns AB(1), . . . , AB(1) are linearly independent;
(b) If i ”= B(1), . . . , B(m), then xi = 0.

The only unknown variables are thus xB(1), . . . , xB(m), and they can be
solved for using the fact that Ax = b.
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Geometry of Linear Programming (Contd.)

For example, consider P œ 3 defined by the constraints

4 Ø x2 ≠ x1, 5 Ø x1, 4 Ø x2 + x1, x2 Ø 0, x3 = 0.
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Geometry of Linear Programming (Contd.)

As the example suggest, basic feasible solutions have a convenient
geometric interpretation.

Definition 4.4 (Extreme Point)

Let P be a polyhedron. A vector x œ P is an extreme point of P if

@y , z œ (P \ x), ⁄ œ [0, 1] : x = ⁄y + (1 ≠ ⁄)z .

Definition 4.5 (Vertex)

Let P be a polyhedron. A vector x œ P is a vertex of P if

÷c : c Õx < c Õy , ’y œ (P \ x).

In other words, x is a vertex of P if and only if P is on one side of the
hyperplane {y | c Õy = c Õx} which meets P only at the point x .
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Geometry of Linear Programming (Contd.)

The following theorem then gives equivalence between basic feasible
solutions of a linear program, and vertices and extreme points of a
polyhedron.

Theorem 4.2

Let P be a nonempty polyhedron and let xú œ P. Then, the following are
equivalent:
(a) xú is a vertex;
(b) xú is an extreme point;
(c) xú is a basic feasible solution.
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Geometry of Linear Programming (Contd.)

Corollary 4.2.1

Given a finite number of linear inequality constraints, there can only be a
finite number of basic or basic feasible solutions.

This follows from the fact that at any basic feasible solutions, there are n
linearly independent active constraints. Since n linearly independent
constraints defines a unique point, it follows that di�erent basic solutions
correspond to di�erent sets of n active constraints. We can thus bound
the number of basic feasible solutions by

!m
n
"

< Œ (i.e., the unique
combinations of choosing n out of m constraints).

It is reassuring that the number of basic feasible solutions is guaranteed
to be finite, however, it can still be very large. For example, the unit
cube {x œ n| 0 Æ xi Æ 1, i = 1, . . . , n} is defined in terms of 2n
constraints, but has 2n basic feasible solutions.
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Geometry of Linear Programming (Contd.)

We have now characterized a set of solutions to general linear programs
in standard form: the set of basic feasible solutions which was shown to
be finite. The next key results establish 1) existence of such solutions,
and – crucially – 2) that the optimal solution is a basic feasible solution.

We begin with another definition:

Definition 4.6

A polyhedron P µ n contains a line if there exists a vector x œ P and a
nonzero vector d œ n such that x + ⁄d œ P, ’⁄ œ n.

Notice that the positive orthant {x | x Ø 0} does not contain a line. It
then follows that a polyhedron in standard form, which is contained in
the positive orthant, does not contain a line either.
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Geometry of Linear Programming (Contd.)

Existence of basic feasible solutions for polyhedra in standard form is
given by the next theorem:

Theorem 4.3

Suppose that the polyhedron P = {x œ n| aÕ
i x Ø bi , i = 1, . . . , m} is

nonempty. Then, the following are equivalent:
(a) The polyhedron P has at least one extreme point.
(b) The polyhedron P does not contain a line.
(c) There exist n vectors out of the family a1, . . . , an, which are linearly

independent.

Corollary 4.3.1

Every nonempty bounded polyhedron and every nonempty polyhedron in
standard form has at least one basic feasible solution.
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Geometry of Linear Programming (Contd.)

And finally, the next theorem ensures that the optimal solution (if it
exists) is a basic feasible solution:

Theorem 4.4

Consider the linear programming problem of minimizing c Õx over a
polyhedron P. Suppose that P has at least one extreme point and that
there exists an optimal solution. Then, there exists an optimal solution
which is an extreme point of P.

Theorem 4.5

Consider the linear programming problem of minimizing c Õx over a
polyhedron P. Suppose that P has at least one extreme point. Then,
either the optimal cost is equal to ≠Œ, or there exists an extreme point
which is optimal.
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Geometry of Linear Programming (Contd.)

To summarize: The provided results show that the solution to a linear
program is an extreme point in the polyhedron defined by the constraints.
We’ve shown how these points/vertices can be solved for as they pertain
to n linearly independent constraints, and that there exists only finitely
many of such extreme points. Finally, we’ve concluded that if their exists
an optimal solution to the linear program, it must be one of these points.

These results are key for understanding why linear programs can be
readily solved. Crucially, the key idea of the simplex algorithm (not
discussed today) is based on traversing between basic feasible solutions,
and it’s convergence is guaranteed given that there are only finitely many
such solutions.
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Duality Theory

In the final part of the TA session, we briefly review key results from
duality theory in the context of linear programming, and then conclude
with an application to the quantile regression.

Recall the following relationship between a linear program in standard
from (LHS) and its dual (RHS):

min
x

c Õx min
p

pÕb

s.t. Ax = b, … s.t. pÕA Æ c Õ,

x Ø 0n. p œ n.

Notice that the dual problem associates a price variable with each
constraint and searches for prices under which the presence (or absence)
of the constraints does not a�ect the optimal cost.
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Duality Theory (Contd.)

The following two results are helpful in characterizing solutions to the
primal and dual problems of a linear program.

Theorem 4.6 (Strong Duality)

If a linear programming problem has an optimal solution, so does its dual,
and the respective optimal costs are equal.

Theorem 4.7 (Complementary Slackness)

Let x and p be feasible solutions to the primal and the dual problem,
respectively. The vectors x and p are optimal solutions for the two
respective problems if and only if

pi(aÕ
i x ≠ bi) = 0, ’i

(cj ≠ pÕAj)xj = 0, ’j.

If the constraints don’t bind at the optimum, then they don’t constrain
the problem: relaxing them has no impact on the objective value.
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Application to Quantile Regression

Recall that quantile regression arg min—·

qn
i=1 fl· (yi ≠ x€

i —· ) is
equivalent to

min
u,v ,—·+,—·≠

#
·1n (1 ≠ ·)1n 0 0

$

S

WWU

u
v

—·+
—·≠

T

XXV

s.t.
#
I ≠I X ≠X

$

S

WWU

u
v

—·+
—·≠

T

XXV = Y ,

S

WWU

u
v

—·+
—·≠

T

XXV Ø 0.
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Application to Quantile Regression (Contd.)

The corresponding dual problem is

max
p

pÕY

s.t.

S

WWU

I
≠I
X Õ

≠X Õ

T

XXV p Æ

S

WWU

·1n
(1 ≠ ·)1n

0
0

T

XXV ,

p œ n.

Notice that this places box constraints on p where (· ≠ 1) Æ pi Æ ·, ’i ,
and that the last two sets of constraints imply X Õp = 0.

Let X œ n◊k , then there are k equality constraints and n box
constraints. Assuming that X has full column rank, it follows from
p œ n that n ≠ k of the box constraints must bind at the optimum.
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Application to Quantile Regression (Contd.)

Consider now the scenario without degeneracy. Then there is a subset of
i1, . . . , ik : · ≠ 1 < pil < ·, l = 1, . . . , k where the box constraints don’t
bind.

The box constraint were derived from the constraints on u and v , so they
are the corresponding Lagrange multipliers. By complementary slackness,
it follows that uik = vik = 0, so that for k observations, the residuals from
quantile regression are 0.

We can now use the k observations to recover —· : —̂· = X̃≠1y where
X̃ = [X€

i1 , . . . , X€
ik ]€.
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