Implementation of the K-Conditional-Means estimator.
Arguments
- y
The outcome variable, a numerical vector.
- X
A (sparse) feature matrix where one column is the categorical predictor.
- which_is_cat
An integer indicating which column of
X
corresponds to the categorical predictor.- K
The number of support points, an integer greater than 2.
Value
kcmeans
returns an object of S3 class kcmeans
. An
object of class kcmeans
is a list containing the following
components:
cluster_map
A matrix that characterizes the estimated predictor of the residualized outcome \(\tilde{Y} \equiv Y - X_{2:}^\top \hat{\pi}\). The first column
x
denotes the value of the categorical variable that corresponds to the unrestricted sample meanmean_x
of \(\tilde{Y}\), the sample sharep_x
, the estimated clustercluster_x
, and the estimated restricted sample meanmean_xK
of \(\tilde{Y}\) with justK
support points.mean_y
The unconditional sample mean of \(\tilde{Y}\).
pi
The best linear prediction coefficients of \(Y\) on \(X\) corresponding to the non-categorical predictors \(X_{2:}\).
which_is_cat
,K
Passthrough of user-provided arguments. See above for details.
References
Wang H and Song M (2011). "Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming." The R Journal 3(2), 29--33.
Wiemann T (2023). "Optimal Categorical Instruments." https://arxiv.org/abs/2311.17021
Examples
# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Print the estimated support points of the categorical predictor
print(unique(kcmeans_fit$cluster_map[, "mean_xK"]))
#> [1] 0.8919541 1.9124459 3.1148056 -0.1195223