Predict Method for rhierMnlRwMixture Objects
predict.rhierMnlRwMixture.Rd
Predict Method for rhierMnlRwMixture Objects
Usage
# S3 method for class 'rhierMnlRwMixture'
predict(
object,
newdata = NULL,
type = "DeltaZ+mu",
burn = 0,
nsim = 10,
r_verbose = TRUE,
...
)
Arguments
- object
A fitted rhierMnlRwMixture object.
- newdata
Optional list containing data for prediction. Structure depends on
type
:For
type %in% c("DeltaZ", "DeltaZ+mu")
: Requiresnewdata$Z
, a matrix withnpred
rows for prediction units (if model was fit with Z).For
type = "posterior_probs"
: Requiresnewdata$nlgtdata
, a list of lengthnlgt
(original number of units). Each element\\[[i]]
must contain$X
, the design matrix(T_i*p) x nvar
for uniti
. Also requiresnewdata$p
, the number of alternatives.For
type = "prior_probs"
: Requiresnewdata$Z
(if model fit with Z, determiningnpred
),newdata$p
, andnewdata$X
(a list of lengthnpred
, each element\\[[i]]
having the design matrix(T_i*p) x nvar
).
- type
Type of prediction:
"DeltaZ"
: Expected part-worths of the representative consumer, \(\Delta(Z)\)."DeltaZ+mu"
: Expected part-worths plus the mean of the unobserved heterogeneity component, \(\Delta(Z) + \mu_j\). Note: for mixtures (ncomp > 1
), this uses the mean \(\mu_1\) from the first component."posterior_probs"
: Posterior predictive choice probabilities for the original estimation units using storedbetadraw
."prior_probs"
: Prior predictive choice probabilities for new prediction units (based onnewdata$Z
or the overall mixture if no Z was used). Probabilities are averaged overnsim
draws from the heterogeneity mixture distribution per posterior draw.
- burn
Integer, number of initial MCMC draws to discard.
- nsim
Integer, number of draws from the heterogeneity mixture distribution per posterior draw for
type = "prior_probs"
.- r_verbose
Logical, print progress updates?
- ...
Additional arguments passed to underlying prediction functions (e.g.,
mc.cores
,verbose
for BARTDeltaZ
predictions viapwbart
).
Value
Depends on type
:
For
type %in% c("DeltaZ", "DeltaZ+mu")
: 3D array[npred, nvar, ndraws_out]
of predicted expected part-worths.For
type = "posterior_probs"
: List of lengthnlgt
. Each element\\[[i]]
is a 3D array[T_i, p, ndraws_out]
of posterior predictive choice probabilities for uniti
.For
type = "prior_probs"
: List of lengthnpred
. Each element\\[[i]]
is a 3D array[T_i, p, ndraws_out]
of prior predictive choice probabilities for prediction uniti
.