Inference Methods for Partially Linear Estimators.
Source:R/ddml_fpliv.R
, R/ddml_pliv.R
, R/ddml_plm.R
summary.ddml_plm.Rd
Inference methods for partially linear estimators. Simple
wrapper for sandwich::vcovHC()
and sandwich::vcovCL()
. Default
standard errors are heteroskedasiticty-robust. If the ddml
estimator was computed using a cluster_variable
, the standard
errors are also cluster-robust by default.
Arguments
- object
An object of class
ddml_plm
,ddml_pliv
, orddml_fpliv
as fitted byddml_plm()
,ddml_pliv()
, andddml_fpliv()
, respectively.- ...
Additional arguments passed to
vcovHC
andvcovCL
. Seesandwich::vcovHC()
andsandwich::vcovCL()
for a complete list of arguments.
References
Zeileis A (2004). "Econometric Computing with HC and HAC Covariance Matrix Estimators.” Journal of Statistical Software, 11(10), 1-17.
Zeileis A (2006). “Object-Oriented Computation of Sandwich Estimators.” Journal of Statistical Software, 16(9), 1-16.
Zeileis A, Köll S, Graham N (2020). “Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.” Journal of Statistical Software, 95(1), 1-36.
Examples
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]
# Estimate the partially linear model using a single base learner, ridge.
plm_fit <- ddml_plm(y, D, X,
learners = list(what = mdl_glmnet,
args = list(alpha = 0)),
sample_folds = 2,
silent = TRUE)
summary(plm_fit)
#> PLM estimation results:
#>
#> , , single base learner
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.00064 0.00688 0.093 9.26e-01
#> D_r -0.14675 0.01473 -9.962 2.25e-23
#>